carboxylic acids. Recently it was reported that the reaction
of alkynes, alkenes, or allenes with CO2 under the catalysis
of metallic complexes1,8-11 afforded esters or lactones. Thus,
the efficient chemical fixation of CO2 under mild conditions
is still of high interest. On the other hand, 1,3-oxazine-2,4-
diones are not only an important class of organic intermedi-
ates in organic synthesis12 but also exhibit some biological
activities, for which they are considered as antiulcer agents,
anticonvulsant drugs, herbicides, and plant growth regulators
(Figure 1).13
CO2 to synthesize such products in just one step (Scheme
1).14 However, although there are a few reports on the
Scheme 1
reaction of amides with carbon dioxide, electrochemical
methods15 or stoichiometric strong bases LDA or n-BuLi16
have to be used. Herein, we report a simple and efficient
reaction of CO2 with 2,3-allenamides under mild conditions
(1 atm of CO2 without metal catalyst), which provides a
novel and efficient synthesis of the potentially useful 1,3-
oxazine-2,4-diones.
Initially, we used N-benzyl 4-methyl-2,3-pentadienamide
1a as the substrate to try the reaction. The CO2 gas from a
CO2 balloon was dried by passing through a gas washing
bottle containing concd H2SO4 and released through a relief
needle to the reaction vessel with an outlet. After many
attempts, we were happy to find that 6-isopropyl-1,3-oxazine-
2,4-dione 2a was formed in 73% NMR yield in the presence
of 1.0 equiv of K2CO3 in DMSO at 70 °C for 3 h (entry 3,
Table 1). Some other typical results under different condi-
tions are summarized in Table 1. Among the most commonly
used solvents, DMSO is the best (entries 1-3, Table 1). The
carbonate used is also very important: From Li2CO3 to
Na2CO3 to K2CO3, the reaction rate was accelerated (entries
3, 5, and 6, Table 1). However, the yield of 2a cannot be
improved further by using Cs2CO3 or increasing the dosage
of K2CO3 (entries 4 and 8, Table 1). When K2CO3 was
reduced to 0.5 equiv or the temperature lowered to 60 °C,
the reaction was slower with recovery of 1a within 3 h
(entries 7 and 9, Table 1). Finally, it is fortunate to note that
2a can also be formed in 75% NMR yield by using a CO2
balloon with the relief needle in DMSO to direct CO2 to the
reaction mixture with 1.0 equiv of K2CO3 at 70 °C for 3 h,
which was defined to be our standard reaction conditions
for further study (entry 10, Table 1). Here an outlet is not
necessary, avoiding the continuous release of CO2 to air.
Other bases such as KHCO3, KOH, Et3N, and (i-Pr)2NH were
also tested; however, no better result was afforded (entries
11-14, Table 1). It is noted that when the reaction was
carried out in the presence of K2CO3 under N2 atmosphere,
no product was afforded with 90% recovery of the starting
Figure 1. Some biologically active 1,3-oxazine-2,4-diones.
According to the structure of 1,3-oxazine-2,4-diones, we
envisioned that 2,3-allenamides may be used to react with
(7) (a) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.
(b) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett.
2008, 10, 2681. (c) Shimizu, K.; Takimoto, M.; Mori, M.; Sato, Y. Synlett
2006, 3182. (d) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M. Org. Lett.
2005, 7, 195. (e) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am.
Chem. Soc. 2004, 126, 5956
.
(8) For reviews on the reaction of CO2-catalyzed by transition-metal
complexes, see: (a) Braunstein, P.; Matt, D.; Nobel, D. Chem. ReV. 1988,
88, 747. (b) Gibson, D. H. Chem. ReV. 1996, 96, 2063
.
(9) For reactions with a Pd catalyst, see: (a) Greco, G. E.; Gleason,
B. L.; Lowery, T. A.; Kier, M. J.; Hollander, L. B.; Gibbs, S. A.; Worthy,
A. D. Org. Lett. 2007, 9, 3817. (b) Yoshida, M.; Murao, T.; Sugimoto, K.;
Ihara, M. Synlett 2007, 575. (c) Yoshida, M.; Ohsawa, Y.; Sugimoto, K.;
Tokuyama, H.; Ihara, M. Tetrahedron Lett. 2007, 48, 8678
.
(10) For reactions with a Ni catalyst, see: (a) Murakami, M.; Ishida,
N.; Miura, T. Chem. Lett. 2007, 36, 476. (b) Takimoto, M.; Mizuno, T.;
Mori, M.; Sato, Y. Tetrahedron 2006, 62, 7589. (c) Takimoto, M.; Mizuno,
T.; Sato, Y.; Mori, M. Tetrahedron Lett. 2005, 46, 5173. (d) Tekavec, T. N.;
Arif, A. M.; Louie, J. Tetrahedron 2004, 60, 7431
.
(11) For reactions with other metallic catalysts, see: (a) Yamada, W.;
Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T. Eur. J. Org. Chem.
2007, 2604. (b) Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada,
T. J. Am. Chem. Soc. 2007, 129, 12902
.
(12) (a) Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34, 1492. (b)
Singh, H.; Singh, P.; Aggarwal, P.; Kumar, S. J. Chem. Soc., Perkin Trans.
1 1993, 731. (c) Larsen, J. S.; Christensen, L.; Ludvig, G.; Jørgensen, P. T.;
Pedersen, E. B.; Nielsen, C. J. Chem. Soc., Perkin Trans. 1 2000, 3035.
(d) Larsen, J. S.; Abdel Aal, M. T.; Pedersen, E. B.; Nielsen, C.
J. Heterocycl. Chem. 2001, 38, 679. (e) Therkelsen, F. D.; Hansen, A.-
L. L.; Pedersen, E. B.; Nielsen, C. Org. Biomol. Chem. 2003, 1, 2908. (f)
Rowbottom, M. W.; Tucci, F. C.; Zhu, Y.-F.; Guo, Z.; Gross, T. D.;
Reinhart, G. J.; Xie, Q.; Struthers, R. S.; Saunders, J.; Chen, C. Bioorg.
Med. Chem. Lett. 2004, 14, 2269. (g) Tucci, F. C.; Zhu, Y.-F.; Struthers,
R. S.; Guo, Z.; Gross, T. D.; Rowbottom, M. W.; Acevedo, O.; Gao, Y.;
Saunders, J.; Xie, Q.; Reinhart, G. J.; Liu, X.-J.; Ling, N.; Bonneville,
A. K. L.; Chen, T.; Bozigian, H.; Chen, C. J. Med. Chem. 2005, 48, 1169.
(13) (a) Kobayashi, M.; Kitazawa, M.; Saito, T. Yakugaku Zasshi 1984,
104, 680. (b) Maffii, G.; Bianchi, G.; Schiatti, P.; Silvestrini, B. Brit.
J. Pharmacol. Chemother. 1961, 16, 231. (c) Maffii, G.; Dezulian, V. M.;
Silvestrini, B. J. Pharm. Pharmacol. 1961, 13, 244. (d) Maffii, G.;
Serralunga, M. G. J. Pharm. Pharmacol. 1961, 13, 309. (e) Testa, E.;
Fontanella, L.; Cristiani, G.; Gallo, G. J. Org. Chem. 1959, 24, 1928. (f)
Ooms, P.; Kunisch, F.; Santel, H. J.; Schmidt, R. R.; Strang, H. Ger. Offen.
1990, 32 pp. (g) Bruno-Blanch, L.; Ga´lvez, J.; Garc´ıa-Domenech, R. Bioorg.
Med. Chem. Lett. 2003, 13, 2749. (h) Yogo, M.; Hirota, K.; Senda, S.
J. Heterocycl. Chem. 1981, 18, 1095.
(14) For a lengthy synthesis of 1,3-oxazine-2,4-diones from 4,4-diphenyl-
2,3-allenoic acids, see: Trifonov, L. S.; Orahovats, A. S. HelV. Chim. Acta
1986, 69, 1585.
(15) (a) Rossi, L.; Feroci, M.; Verdecchia, M.; Inesi, A. Lett. Org. Chem.
2005, 2, 731. (b) Casadei, M. A.; Moracci, F. M.; Zappia, G.; Inesi, A.;
Rossi, L. J. Org. Chem. 1997, 62, 6754. (c) Casadei, M. A.; Cesa, S.;
Moracci, F. M.; Inesi, A.; Feroci, M. J. Org. Chem. 1996, 61, 380. (d)
Casadei, M. A.; Cesa, S.; Inesi, A. Tetrahedron 1995, 51, 5891.
(16) (a) Coppola, G. M.; Damon, R. E. J. Heterocycl. Chem. 1995, 32,
1133. (b) Katritzky, A. R.; Fan, W.-Q.; Koziol, A. E.; Palenik, G. J.
Tetrahedron 1987, 43, 2343. (c) Katritzky, A. R.; Fan, W.-Q. Org. Prep.
Proced. Int. 1987, 19, 263.
Org. Lett., Vol. 11, No. 13, 2009
2901