10.1002/anie.201709717
Angewandte Chemie International Edition
COMMUNICATION
26). The configuration was determined by NOE NMR (see
supporting information).
University, for helpful discussions and Dr. S. Cattaneo, CCI at
Cardiff University, for assistance with the 3D printing. We also
thank the EPSRC National Mass Spectrometry Facility,
Swansea, for mass spectrometric data. We thank Cardiff
University and the Erasmus program (K.P.) for financial support.
The nitrogen-oxygen bond reduction in flow was performed
using a Zn cartridge[17] and acetic acid, as shown in Scheme
6.[ 18 ] The cartridge was heated to 40 ºC to achieve full
conversion to the corresponding alcohols (Scheme 6).
Compounds 30–32 were prepared in 54–80% overall yield.
Keywords: flow electrochemistry • cyclizations • isoindolinones •
microreactors • tandem reactions
AcOH, H2O
3 F/mol
O
R
N
[1] a) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R. Vasquez-
Medrano, Green Chem. 2010, 12, 2099–2119; b) O. Hammerich, B.
Speiser, Organic Electrochemistry, CRC Press, Boca Raton, 2016; c) E. J.
Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308.
[2] M. Yan, Y. Kawamata, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, in
press. DOI: 10.1002/anie.201707584
[3] a) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P.
S. Baran, Nature 2016, 533, 77; b) R. Hayashi, A. Shimizu, J. Yoshida, J.
Am. Chem. Soc. 2016, 138, 8400; c) L. Schulz, M. Enders, B. Elsler, D.
Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem.
Int. Ed. 2017, 56, 4877; d) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin,
Science 2017, 357, 575; e) R. Feng, J. A. Smith, K. D. Moeller, Acc.
Chem. Res. 2017, 50, 2346–2352.
H
40 ˚C
Zn
cartridge
O
N
R'
N
R'
R
0.1 mL/min
OH
BnNMe3OH (2 eq)
TEMPO (1.5 eq)
30–32
O
O
OH
Ph
N
N
O
OH
OH
O
Ph
30, 80%
31, 54%
32, 66%
[4] a) J. Yoshida, Electrochem. Soc. Interface 2009, 40–45; b) K. Watts, A.
Baker, T. Wirth, J. Flow Chem. 2014, 4, 2–11; c) A. Folgueiras-Amador, T.
Wirth, J. Flow Chem. 2017, in press; d) M. Atobe, H. Tateno, Y.
Matsumura, Chem. Rev. 2017, 117, in press. DOI:
Scheme 6. Two-step flow reaction: cyclization and reduction.
Two additional transformations performed in the electrochemical
flow reactor without supporting electrolyte are shown in Scheme
7. The electrolysis of thioacetic acid generates the correspon-
ding radical. Unlike carboxylic acids, which decarboxylate and
react in Kolbe reactions, the thioacetyl radical is stable and adds
smoothly to terminal alkynes to yield products such as 33. The
use of hexafluoroisopropanol (HFIP) to stabilize the formed
radical is crucial as with other solvents dimerization of thioacetic
acid is observed. An intramolecular C–H thiolation of N-
arylthioamides to form benzothiazoles such as 34 can also be
performed with superior yields than the batch process, which
needs TEMPO and a supporting electrolyte to operate.[19]
10.1021/acs.chemrev.7b00353
[5] S. J. Yoo, L.-J. Li, C.-C. Zeng, R. D. Little, Angew. Chem. Int. Ed. 2015,
54, 3744–3747.
[6] a) D. Horii, M. Atobe, T. Fuchigami, F. Marken, Electrochem. Commun.
2005, 7, 35–39; b) R. Horcajada, M. Okajima, S. Suga, J. Yoshida, Chem.
Commun. 2005, 1303–1305; c) P. He, P. Watts, F. Marken, S. J. Haswell,
Angew. Chem. Int. Ed. 2006, 45, 4146–4149; d) J. Kuleshova, J. T. Hill-
Cousins, P. R. Birkin, R. C. D. Brown, D. Pletcher, T. J. Underwood,
Electrochim. Acta 2011, 56, 4322–4326; e) A. Attour, P. Dirrenberger, S.
Rode, A. Ziogas, M. Matlosz, F. Lapicque, Chem. Eng. Sci. 2011, 66,
480–489; f) T. Kashiwagi, B. Elsler, S. R. Waldvogel, T. Fuchigami, M.
Atobe, J. Electrochem. Soc. 2013, 160, G3058–G3061; g) M. A.
Kabeshov, B. Musio, P. R. D. Murray, D. L. Browne, S. V. Ley, Org. Lett.
2014, 16, 4618–4621; h) M. R. Chapman, Y. M. Shafi, N. Kapur, B. N.
Nguyen, C. E. Willans, Chem. Commun. 2015, 51, 1282–1284; i) R. A.
Green, R. C. D. Brown, D. Pletcher, B. Harji, Org. Process Res. Dev.
2015, 19, 1424–1427; j) C. Gütz, M. Bänziger, C. Bucher, T. R. Galvão, S.
R. Waldvogel, Org. Process Res. Dev. 2015, 19, 1428–1433; k) R. A.
Green, D. Pletcher, S. G. Leach, R. C. D. Brown, Org. Lett. 2015, 17,
3290–3293; l) R. A. Green, R. C. D. Brown, D. Pletcher, B. Harji,
Electrochem. Commun. 2016, 73, 63–66; m) C. Gütz, A. Stenglein, S. R.
Waldvogel, Org. Process Res. Dev. 2017, 21, 771–778.
Pt cathode / Graphite anode
1 F mol–1
O
a)
CH3COSH (2 eq.)
S
HFIP
33, 49%
[7] a) K. Watts, W. Gattrell, T. Wirth, Beilstein J. Org. Chem. 2011, 7, 1108–
1114; b) K. Arai, K. Watts, T. Wirth, Chem. Open 2014, 3, 23–28; c) K.
Arai, T. Wirth, Org. Process Res. Dev. 2014, 18, 1377–1381.
[8] a) T. J. Donohoe, C. K. A. Callens, A. Flores, A. R. Lacy, Chem. Eur. J.
2011, 17, 58–76; b) P. H. Fuller, J. Kim, S. R. Chemler, J. Am. Chem. Soc.
2008, 130, 17638–17639; c) G. Yang, W. Zhang, Org. Lett. 2012, 14,
268–271.
Ph
Pt cathode / Graphite anode
Ph
1.25 F mol–1
HN
S
N
b)
S
MeCN/H2O (1:1)
[9] a) H. C. Xu, J. M. Campbell, K. D. Moeller, J. Org. Chem. 2014, 79, 379–
391; b) F. Xu, L. Zhu, S. Zhu, X. Yan, H. C. Xu, Chem. Eur. J. 2014, 20,
12740–12744; b) L. Zhu, P. Xiong, Z. Y. Mao, Y. H. Wang, X. Yan, X. Lu,
H. C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226–2229; c) Z. W. Hou, Z. Y.
Mao, H. B. Zhao, Y. Y. Melcamu, X. Lu, J. Song, H. C. Xu, Angew. Chem.
Int. Ed. 2016, 55, 9168–9172; d) P. Xiong, H. H. Xu, H. C. Xu, J. Am.
Chem. Soc. 2017, 139, 2956–2959.
[10] E. W. Washburn, International Critical Tables of Numerical Data, Physics,
Chemistry and Technology. National Academy of Sciences, McGraw Hill,
New York, 1926.
[11] a) L. Eberson, O. Persson, M. P. Hartshorn, Angew. Chem. Int. Ed. 1995,
34, 2268–2269; b) L. Eberson, M. P. Hartshorn, O. Persson, J. Chem.
Soc., Perkin Trans. 2 1995, 1735–1744.
[12] H. C. Xu, K. D. Moeller, J. Am. Chem. Soc. 2010, 132, 2839–2844.
[13] J. M. Campbell, H. C. Xu, K. D. Moeller, J. Am. Chem. Soc. 2012, 134,
18338–18344.
34, 97%
Scheme 7. a) Electrochemical addition of thioacetic acid to phenyl acetylene;
b) Electrochemical C–H thiolation of an N-arylthioamide to benzothiazole 34.
In conclusion,
a new and efficient flow electrochemical
microreactor has been designed and manufactured which was
used to generate nitrogen and sulfur-based radical intermediates
for syntheses with no or little supporting electrolyte. In addition,
one of the first combinations of an electrochemical reaction with
a second one in a single flow system is demonstrated.[20]
[14] R. Manoharan, M. Jeganmohan, Chem. Commun. 2015, 51, 2929–2932.
[15] CCDC-1569516 (12), CCDC-1569515 (23a) and CCDC-1569517 (23b)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic
Acknowledgements
[16] J. Gui, H. Tian, W. Tian, Org. Lett. 2013, 15, 4802–4805.
[17] The Zn cartridge was prepared using silica as support (60 – 100 mesh,
50% in weight). This was required to reduce the backpressure produced
due to the small size of the Zn dust particles (<10 µm).
We thank the workshop staff from Cardiff School of Chemistry
for helping in the reactor manufacturing and Prof. S. Waldvogel,
Mainz University, for enabling the electrode and solvent
screening in his laboratory. We thank Dr. D. L. Browne, Cardiff
[18] a) P. G. M. Wuts, Y. W. Jung, J. Org. Chem. 1988, 53, 1957–1965; b) D.
A. Dias, M. A. Kerr, Org. Lett. 2009, 11, 3694–3697.
4
This article is protected by copyright. All rights reserved.