3448 Organometallics, Vol. 28, No. 12, 2009
Gruber et al.
CD2Cl2): δ 142.5, 140.9, 128.9, 125.9, 108.8, 100.1, 66.7, 21.1,
9.8. Anal. Calcd for C27H34O6RuS2: C, 52.33; H, 5.53. Found: C,
52.05; H, 5.52. Crystals were obtained by layering an acetone
solution with ether.
Chemistry of the Allyl Sulfonate Ethers with 1. Allyl tosylate
(12.6 mg, 0.059 mmol) was added to either a CD3CN or a CD2Cl2
(0.5 mL) solution of [Ru(Cp*)(CH3CN)3]PF6 (30 mg, 0.059 mmol)
in an NMR tube, and the spectra were recorded. Allyl mesylate
(8.1 mg, 0.059 mmol) was added to either a CD3CN or a CD2Cl2
(0.5 mL) solution of [Ru(Cp*)(CH3CN)3]PF6 (30 mg, 0.059 mmol)
in an NMR tube, and the spectra were recorded.
Computational Details. The calculations were performed using
the GAUSSIAN 03 software package47 and the PBE1PBE func-
tional, without symmetry constraints. That functional uses a hybrid
generalized gradient approximation (GGA), including a 25%
mixture of Hartree-Fock48 exchange with DFT40 exchange-
correlation, given by a Perdew, Burke, and Ernzerhof functional
(PBE).49 The optimized geometries were obtained with the LanL2DZ
basis set50 augmented with a f-polarization function51 for Ru and
a standard 6-31G(d,p)52 for the remaining elements. Frequency
calculations were performed, yielding no imaginary frequency
modes and confirming the nature of the stationary points as minima.
A natural population analysis (NPA)42 and the resulting Wiberg
indices41 were used to study the electronic structure and bonding
of the optimized species.
[Ru(Cp*)(η3-C3H5)(CH3SO3)2], 11. Toluene (19 mL) was added
to an acetonitrile (19 mL) solution of [Ru(η3-C3H5)(Cp*)Cl2] (0.100
g, 0.29 mmol) and CH3SO3Ag (0.117 g, 0.58 mmol). The reaction
mixture was stirred at room temperature for 14 h, after which time
the solution was evaporated under vacuum. The resulting residue
was dissolved in dichloromethane (3 mL) and filtered. After
evaporation of the solvent the resulting solid was washed with cold
(0 °C) THF (2 × 1 mL) and dried under vacuum to afford an orange
1
solid (0.093 g, 69%). H NMR (300 MHz, CD2Cl2): δ 6.48-6.37
(1H, m), 5.05 (2H, d, J ) 6.3 Hz), 2.86 (2H, d, J ) 10.2 Hz), 2.73
(6H, s), 1.64 (15H, s). 13C NMR (75 MHz, CD2Cl2): δ 108.6, 100.0,
67.7, 41.6, 9.5. Anal. Calcd for C15H26O6RuS2: C, 38.53; H, 5.60.
Found: C, 39.33; H, 5.63.
[Ru(Cp*)(SO4)(η3-C3H5)], 13. Ag2SO4 (0.488 g, 1.29 mmol)
was added to an acetonitrile (30 mL) solution of [Ru(Cp*)(η3-
C3H5)Cl2] (0.15 g, 0.43 mmol). The reaction mixture was stirred
at room temperature for 18 h, after which time the solution was
evaporated under vacuum. The resulting residue was dissolved
in CH2Cl2 and filtered through Celite. The filtrate was evaporated,
and the residue was dried under vacuum. This sequence was
repeated twice to yield a light brown solid (0.143 g, 89%). A
dichloromethane solution of this solid was then layered with
diethyl ether and stored at -6 °C, to afford crystals of 13 suitable
for X-ray diffraction. 1H NMR (CD2Cl2, 500 MHz): δ 5.25-5.21
(m, 1H, C-Hcentral), 4.03 (d, 2H, J ) 6.5 Hz, C-Hsyn), 2.63 (d,
2H, J ) 10.5 Hz, C-Hanti), 1.65 (s, 15H, C5Me5). 13C NMR
(CD2Cl2, 125 MHz): δ 107.3 (C5Me5), 101.5 (Ccentral), 65.6
(Cterminal), 9.3 (C5Me5). 1H NMR (CD3CN, 300 MHz) δ 5.22-5.13
(m, 1H, C-Hcentral), 4.00 (d, 2H, J ) 6.3 Hz, C-Hsyn), 2.79 (d,
2H, J ) 10.5 Hz, C-Hanti), 1.67 (s, 15H, C5Me5). 13C NMR (75
MHz, CD3CN): δ 107.4 (C5Me5), 101.0 (Ccentral), 65.2 (Cterminal),
8.5 (C5Me5).
Acknowledgment. P.S.P. thanks the Swiss National Sci-
ence Foundation, the ETH Zurich, COST Action D24
“Sustainable Chemical Processes: Stereoselective Transition
Metal-Catalysed Reactions”, and COST D40-“Innovative
Catalysis: New Processes and Selectivities” for support, as
well as the Johnson Matthey company for the loan of
ruthenium salts.
Supporting Information Available: Supplementary structural
and electronic data, as well as tables with atomic coordinates for
all the optimized species. Table of catalytic data from ref 14a,14a
and cif files for the structural data on 12 and 13. This material is
OM900168Y
Anal. (%) Calcd for C13H20O4SRu: C 41.81, H 5.40. Found: C
41.33, H 5.36. HR MALDI-MS: calcd for [MH+] 375.0198, found
375.0198.
(47) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(48) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; John Wiley & Sons: New York, 1986.
(49) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1997,
78, 1396. (b) Perdew, J. P. Phys. ReV. B 1986, 33, 8822.
(50) (a) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry;
Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, p 1. (b) Hay,
P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (c) Wadt, W. R.; Hay,
P. J. J. Chem. Phys. 1985, 82, 284. (d) Hay, P. J.; Wadt, W. R. J. Chem.
Phys. 1985, 82, 2299.
Attempt to Synthesize [Ru(Cp*)(η3-2-CH3C6H4CHCHCH2)-
(CH3CN)(p-CH3C6H4SO3)]2+. 1-(2-Tolyl)prop-2-en-1-ol (17.6 mg,
0.119 mmol) was added to an acetonitrile (2.5 mL) solution of
[Ru(Cp*)(CH3CN)3]PF6 (60 mg, 0.119 mmol) and p-toluenesulfonic
acid monohydrate (22.6 mg, 0.119 mmol). The resulting orange
solution was stirred at room temperature for 30 min, after which
time the solution was concentrated under vacuum. The resulting
crude material was washed two times with ether and then dried to
afford 87 mg of an orange solid. This solid is not completely soluble
in CD2Cl2.
Oxidative Addition Reactions of ArCH(OH)CHdCH2 (Ar
) Ph or 2-CH3C6H4). 1-(2-Tolyl)prop-2-en-1-ol (8.8 mg, 0.059
mmol) was added to an acetonitrile-d3 (0.5 mL) solution of
[Ru(Cp*)(CH3CN)3]PF6 (30 mg, 0.059 mmol) and p-toluenesulfonic
acid monohydrate (11.3 mg, 0.059 mmol) in an NMR tube.
R-Vinylbenzyl alcohol (8.08 mg, 0.059 mmol) was added to an
acetonitrile-d3 (0.5 mL) solution of [Ru(Cp*)(CH3CN)3]PF6 (30 mg,
0.059 mmol) and p-toluenesulfonic acid monohydrate (11.3 mg,
0.059 mmol) in an NMR tube.
(43) Sheldrick, G. M. SHELXLS-97; University of Go¨ttingen: Germany,
1997.
(44) Sheldrick, G. M. SHELXL-97; University of Go¨ttingen: Germany,
1997.
(51) Ehlers, A. W.; Bo¨hme, M.; Dapprich, S.; Gobbi, A.; Ho¨llwarth,
A.; Jonas, V.; Ko¨hler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.
Chem. Phys. Lett. 1993, 208, 111.
(45) (a) Briot, A.; Baehr, C.; Brouillard, R.; Wagner, A.; Mioskowski,
C. J. Org. Chem. 2004, 69, 1374–1377. (b) Emmons, W. D.; Ferris, H. F.
J. Am. Chem. Soc. 1953, 9, 2257–2257.
(46) Nagashima, H.; Mukai, K.; Shiota, Y.; Ara, K.; Itoh, K.; Suzuki,
H.; Oshima, N.; Morooka, Y. Organometallics 1985, 4, 1314–1315.
(52) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257. (c) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. (d)
Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. (e) Hariharan, P. C.; Pople,
J. A. Theor. Chim. Acta 1973, 28, 213.