5640
B. C. Das et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5638–5641
BF102 to have potent effects at sub-lethal doses. Treatment with
BF102 in hepatocytes resulted in a significant decrease of rate-
limiting enzymes in the synthesis pathways for both fatty acids
and cholesterol at the mRNA levels. Consistent with gene expres-
sion data, BF102 has displayed an inhibitory effect on biosynthesis
of both palmitate and cholesterol. Since SREBP transcription factors
are the key activators of these genes, it is likely that BF102 func-
tions through interfering SREBP functions. However, the precise
mechanism(s) of BF102 actions are currently unclear. Experiments
are ongoing in our laboratory to identify the molecular target(s) of
BF102. According to our data, the IC50 of BF102 is about 30 lM in
cultured cells. Currently, we are designing and synthesizing
BF102 analogs in order to improve the inhibitory effects on lipo-
genic gene expression. Interestingly, our preliminary data in vivo
suggests that BF102 has no significant toxicity in mice at the high-
est possible dose administered. Thus, our novel boron-containing
compounds may become the next generation of lipid-lowering
drugs in treating cardiovascular diseases in humans.
Figure 3. Effects of boron-containing compounds on lipogenic gene expression and
de novo lipogenesis. A. Relative mRNA levels of fatty acid synthase (FAS) (detected
by quantitative RT-PCR) in HepG2 cells treated with 30 lM of the indicated
compounds for 6 h. Cyclophilin B was the invariant control. B. Relative synthesis
rate of palmitate (detected by the deuterium enrichment method) in FAO cells after
12 h of treatment with BF102 (20 lM). Data are the averages of three independent
samples. #p <0.001 versus DMSO (n = 3).
Acknowledgments
This work was supported by AECOM start-up funds (to B.F. & F.Y.)
and a DRTC pilot & feasibility grant (to B.F. & F.Y.) under P60
DK020541 (to Einstein DRTC). The authors thank Drs. Bhavapriya
Vaitheesvaran and Irwin Kurland for measuring biosynthesis of
palmitate and cholesterol, and Dr. Jeffrey E. Pessin for his support
and advice.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 4. BF102 inhibits cholesterol biosynthesis. A. Relative mRNA levels of HMG-
CoA reductase (HMGCR) (detected by quantitative RT-PCR) in HepG2 cells treated
with the indicated concentrations of BF102 for 6 h. Cyclophilin B was the invariant
control. B. The synthesis rate of cholesterol (detected by the deuterium enrichment
1. Sato, R. Arch. Biochem. Biophys. 2010, 501, 177.
2. Eberle, D.; Hegarty, B.; Bossard, P.; Ferre, P.; Foufelle, F. Biochimie 2004, 86, 839.
3. Osborne, T. F.; Espenshade, P. J. Genes Dev. 2009, 23, 2578.
4. Biddinger, S. B.; Almind, K.; Miyazaki, M.; Kokkotou, E.; Ntambi, J. M.; Kahn, C.
R. Diabetes 2005, 54, 1314.
5. Sato, R. FEBS J. 2009, 276, 622.
6. Alberts, A. W. Am. J. Cardiol. 1988, 62, 10J.
method) in FAO cells after 12 h of treatment with BF102 (20 l
M). #p <0.001 versus
DMSO (n = 3).
7. Golomb, B. A.; Evans, M. A. Am. J. Cardiovasc. Drugs 2008, 8, 373.
8. Groziak, M. P. In Progress in Heterocyclic Chemistry; Gribble, G. C., Gilchrist, T. L.,
Eds.; Pergamon: Oxford, 2000; Vol. 12, pp 1–21.
9. (a) Morin, C. Tetrahedron 1994, 50, 12521; (b) Yang, W.; Gao, X.; Wang, B. Med.
Res. Rev. 2003, 23, 346; (c) Kabalka, G. W.; Das, B. C.; Das, S. Tetrahedron Lett.
2001, 42, 7145.
synthesis. Consistent with our gene expression results, using the
deuterium enrichment method followed by gas chromatography
and by mass spectrometry (GC/MS), we found that 20 lM of
BF102 can significantly decrease the synthesis rate of palmitate,
the product of FAS, in rat hepatocytes, FAO cells in the presence
of 100 nM insulin (Fig. 3B). Thus, BF102 can inhibit de novo
lipogenesis.
Next, we wish to test whether BF102 also affect the cholesterol
biosynthesis pathway. Using qRT-PCR, we found that BF102 treat-
ment can dose-dependently decrease the mRNA levels of HMGCR, a
rate-limiting enzyme for cholesterol biosynthesis and the target of
well-known cholesterol lowering drug statins, in HepG2 cells,
while BF62 had no effect at all (Fig. 4A and data not shown). Using
the deuterium enrichment method followed by GC/MS, we found
10. (a) Koehler, K. A.; Lienhard, G. E. Biochemistry 1971, 10, 2477; (b) Hall, D. G. In
Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine; Hall,
D. G., Ed.; Wiley-VCH GmbH & Co. KGaA: Weinheim, 2005; Vol. xxvi, p 550
(University of Alberta).
11. (a) Zhong, S.; Haghjoo, K.; Kettner, C.; Jordan, F. J. Am. Chem. Soc. 1995, 117,
7048; (b) Bao, D.; Huskey, W. P.; Kettner, C. A.; Jordan, F. J. J. Am. Chem. Soc.
1999, 121, 4684; (c) Kats, B. A.; Finer-Moore, J.; Mortezaei, R.; Rich, D. H.;
Stroud, R. M. Biochemistry 1995, 34, 8264.
12. (a) Matteson, D. S. Tetrahedron 1989, 45, 1859; (b) Matteson, D. S. Chem. Rev.
1989, 89, 1535; (c) Tian, Z.-Q.; Brown, B. B.; Mack, D. P.; Hutton, C. A.; Bartlett,
P. A. J. Org. Chem. 1997, 62, 514; (d) Fevig, J. M.; Abelman, M. M.; Brittelli, D. R.;
Kettner, C. A.; Knabb, R. M.; Weber, P. C. Bioorg. Med. Chem. Lett. 1996, 6, 295;
(e) Skordalakes, E.; Eligendy, S.; Goodwin, C. A.; Green, D.; Scully, M. F.; Kakkar,
V. V.; Freyssinet, J.-M.; Dodson, G.; Deadman, J. J. Biochemistry 1998, 37, 14420;
(f) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305.
13. Das, B. C.; Madhukumar, A. V.; Anguiano, J.; Kim, S.; Sinz, M.; Zvyaga, T. A.;
Power, E. C.; Ganellin, C. R.; Mani, S. Bioorg. Med. Chem. Lett. 2008, 18, 3974.
14. Das, B. C.; Smith, M. E.; Kalpana, G. V. Bioorg. Med. Chem. Lett. 2008, 18, 4177.
15. Das, B. C.; Smith, M. E.; Kalpana, G. V. Bioorg. Med. Chem. Lett. 2008, 18, 3805.
16. Das, B. C.; Madhukumar, A. V.; Anguiano, J.; Mani, S. Bioorg. Med. Chem. Lett.
2009, 19, 4204.
that 20 lM of BF102 can also significantly decrease the synthesis
rate of cholesterol in FAO cells induced by 100 nM insulin
(Fig. 4B). Thus, BF102 can inhibit de novo cholesterol synthesis.
Together, our datas strongly suggest that BF102 is an inhibitor for
both de novo lipogenesis and cholesterogenesis by down-regulating
SREBP-target genes.
In this study, we have designed and synthesized a series of
novel boron-containing stilbene derivatives and tested their bio-
logical activity as lipogenic inhibitors in mammalian hepatocytes.
From a screen of this small library, we identified one compound
17. Das, B. C.; Mahalingam, S. M.; Evans, T. Tetrahedron Lett. 2009, 50, 3031.
18. Das, B. C.; Mahalingam, S. M.; Evans, T.; Kabalka, G. W.; Anguiano, J.; Hema, K.
Chem. Commun. 2009, 2133.
19. Torregroza, I.; Evans, T.; Das, B. C. Chem. Biol. Drug Des. 2009, 73, 339.
20. Das, B. C.; McCartin, K.; Liu, T. C.; Peterson, R. T.; Evans, T. PLoS ONE 2010, 5,
e10004.