3664
M. C. Bagley et al. / Tetrahedron Letters 50 (2009) 3661–3664
2. Ley, S. V.; Thomas, A. V. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
3. Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–
2364.
4. Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439.
5. Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58,
2041–2075.
6. Kondo, T.; Mitsudo, T.-a. Chem. Rev. 2000, 100, 3205–3220.
7. (a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–3520; (b) Hickman, R. J.
S.; Christie, B. J.; Guy, R. W.; White, T. J. Aust. J. Chem. 1985, 38, 899–904; (c)
Kalinin, A. V.; Bower, J. F.; Riebel, P.; Snieckus, V. J. Org. Chem. 1999, 64, 2986–
2989; (d) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4,
2803–2806; (e) Varala, R.; Ramu, E.; Mujahid Alam, M.; Adapa, S. R. Chem. Lett.
2004, 33, 1614–1615; (f) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I.
Chem. Eur. J. 2007, 13, 5100–5105; (g) Lindley, J. Tetrahedron 1984, 40, 1433–
1456.
(entry 6) employed CuI (5 mol %), ( )-trans-cyclohexane-1,2-diol
(2 equiv) and K2CO3 (2 equiv) in 2-propanol at 120 °C for 3 h and
gave sulfide 3d in excellent yield (95%), as identified by both spec-
troscopic and spectrometric data. Experiments run under identical
conditions in the absence of the ligand gave a much lower yield
(entry 7, 63%), and in the absence of the catalyst, did not give
any product at all (entry 8), clearly demonstrating the benefit of
these new conditions.
In order to explore the scope of the optimised microwave-as-
sisted procedure, a range of both electron-rich and electron-poor
aryl halides were reacted in turn with a selection of thiols (Table
3). In general, the reaction gave very good yields and was highly
successful for iodides and specific bromides. An alkyl thiol was
used as an alternative to aryl thiols, with some reduction in effi-
ciency. Furthermore, the simultaneous formation of two C–S bonds
proceeded in excellent yield using dihalobenzene substrates.
In conclusion, microwave irradiation of aryl iodides, or in some
cases the analogous bromide, and a thiol in the presence of cata-
lytic CuI, a cyclohexanediol ligand and base in 2-propanol gives
the corresponding sulfide rapidly and efficiently under microwave
irradiation. This method should be amenable to library synthesis
and applicable for the synthesis of a range of sulfur-containing
targets.
8. Buranaprasertsuk, P.; Chang, J. W. W.; Chavasiri, W.; Chan, P. W. H. Tetrahedron
Lett. 2008, 49, 2023–2025.
9. Bagley, M. C.; Davis, T.; Dix, M. C.; Rokicki, M. J.; Kipling, D. Bioorg. Med. Chem.
Lett. 2007, 17, 5107–5110.
10. (a) Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127–1139; (b) Collins, J. M.;
Leadbeater, N. E. Org. Biomol. Chem. 2007, 5, 1141–1150; (c) Adam, D. Nature
2003, 421, 571–572; (d)Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-
VCH: Weinheim, 2002; (e) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–
6284; (f) Hayes, B. L. Aldrichim. Acta 2004, 37, 66–77; (g) Kuhnert, N. Angew.
Chem., Int. Ed. 2002, 41, 1863–1866; (h) Lidström, P.; Tierney, J.; Wathey, B.;
Westman, J. Tetrahedron 2001, 57, 9225–9283; (i) Loupy, A.; Petit, A.; Hamelin,
J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. Synthesis 1998, 1213–1234; (j)
Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S. J.; Mingos, D. M. P. Chem. Soc.
Rev. 1998, 27, 213–224; (k) Galema, S. A. Chem. Soc. Rev. 1997, 26, 233–238; (l)
Caddick, S. Tetrahedron 1995, 51, 10403–10432; (m) Strauss, C. R.; Trainor, R.
W. Aust. J. Chem. 1995, 48, 1665–1692.
11. Ranu, B. C.; Saha, A.; Jana, R. Adv. Synth. Catal. 2007, 349, 2690–2696.
12. Wu, Y.-J.; He, H. Synlett 2003, 1789–1790.
Acknowledgements
13. In the optimised experimental procedure,
a
solution of 4-iodoanisole 2d
mol),
(117 mg, 0.5 mmol), PhSH 1b (55 mg, 0.05 mL, 0.5 mmol), CuI (5 mg, 25
l
We thank the EPSRC (GR/S25456 and DTA to V.F.), BBSRC (BB/
D524140), and SPARC (award to M.C.B.) for their generous support
of this work, Dr. Rob Jenkins for technical assistance and the EPSRC
Mass Spectrometry Service at the University of Wales, Swansea UK
for mass spectra.
( )-trans-cyclohexane-1,2-diol (116 mg, 1.0 mmol), K2CO3 (138 mg, 1.0 mmol)
in 2-propanol (2 mL) was irradiated at 120 °C for 3 Â 1 h in a pressure-rated
glass tube (10 mL) using
a
CEM DiscoverÒ microwave synthesiser by
moderating the initial power (150 W). After cooling in a flow of compressed
air, the reaction mixture was filtered and evaporated in vacuo. Purification by
column chromatography on silica gel, eluting with hexane–CH2Cl2 (3:1), gave
sulfide 3d (103 mg, 95%) as a yellow oil (found: M+, 216.0607. C13H12OS [M]
requires 216.0609); 1H NMR (400 MHz, DMSO-d6) d 7.42 (2H, m), 7.30 (2H, m),
7.18 (1H, m), 7.13-7.11 (2H, m), 7.01 (2H, m), 3.78 (3H, s); 13C NMR (125 MHz;
DMSO-d6) 159.7 (C), 137.8 (C), 135.3 (CH), 129.2 (CH), 127.7 (CH), 126.0 (C),
123.0 (CH), 115.4 (CH), 55.3 (Me); MS (EI) m/z (rel. intensity) 216 (M+, 100%),
201 (55).
References and notes
1. (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384; (b) Ullmann, F. Ber.
Dtsch. Chem. Ges. 1904, 37, 853–857; (c) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906,
39, 1691–1696.