N. R. Jones, G. Pattenden / Tetrahedron Letters 50 (2009) 3527–3529
3529
6. Destabel, C.; Kilburn, J. D. J. Chem. Soc., Chem. Commun. 1992, 596; Destabel, C.;
Kilburn, J. D.; Knight, J. Tetrahedron Lett. 1993, 34, 3151; Santagostino, M.;
Kilburn, J. D. Tetrahedron Lett. 1994, 35, 8863; Destabel, C.; Kilburn, J. D.; Knight,
J. Tetrahedron Lett. 1994, 50, 11267; Destabel, C.; Kilburn, J. D.; Knight, J.
Tetrahedron Lett. 1994, 50, 11289; Pike, K. G.; Destabel, C.; Anson, M.; Kilburn, J.
D. Tetrahedron Lett. 1998, 39, 5877.
7. Cairns, P. M.; Crombie, L.; Pattenden, G. Tetrahedron Lett. 1982, 23, 1405.
8. Miles, M. F.; Pasto, D. J. J. Org. Chem. 1976, 41, 2068.
9. Chatgilialoglu, C.; Giese, B.; Kopping, B. J. Org. Chem. 1992, 57, 3994.
10. Eguchi, S.; Nagata, F.; Ohno, M.; Sasaki, T. J. Org. Chem. 1976, 41, 2408.
11. Lawson, E. N.; Nishiyama, T.; Woodhall, J. F.; Kitching, W. J. Org. Chem. 1989, 54,
2183.
starting material was recovered, even after prolonged reaction
times. Realistically, we were not expecting to see any product
resulting from a 4-exo radical cyclisation in 15b, but we were hop-
ing to observe other products resulting from competitive ring clo-
sure reactions within the allenecyclopropane ring in the starting
material. We felt that one of the reasons for the failure of 15b to
react with TTMSS–AIBN could be associated with the steric
demands of the bulky Si(SiMe3)3 group in the silane. In order to
interrogate this system further, we decided to generate a carbon-
centred radical from the corresponding iodide 18 and study its
chemistry. The iodide 18 was easily available from iodination of
the corresponding alcohol produced from 2-(1-cyclohexenyl)etha-
nol and 3-chloro-3-methyl-butyne, as described earlier. Interest-
ingly, treatment of the iodide 18 with TTMSS–AIBN in toluene at
90 °C for 2 h resulted in the formation of the enyne 21 in 43%
yield.13 We suggest that the enyne 21 is produced from 18 by
way of a rarely encountered 1,4-hydrogen abstraction process15
from the radical intermediate 19, leading to the cyclopropylmethyl
radical centre 20 which then undergoes fragmentation to 21
(Scheme 4).
12. Hennion, G. F.; Nelson, K. W. J. Am. Chem. Soc. 1957, 79, 2142.
13. All new compounds showed satisfactory spectroscopic and mass spectrometric
data. Selected data: For the allenecyclopropane 5: IR (film/cmÀ1
) mmax 2999,
2905, 2850, 2010, 1641; 1H NMR (CDCl3, 250 MHz) d (ppm): 5.90 (1H, ddt,
J = 17.1, 10.3, 5.2 Hz, CH2@CHCH2), 5.00 (1H, dd, J = 17.1, 2.0 Hz, CH2@CHCH2),
4.95 (1H, dd, J = 10.3, 2.0 Hz, CH2@CHCH2), 2.05–2.27 (2H, m, CH2@CHCH2),
1.75 (6H, s, C(CH3)2), 1.27–2.02 (9H, m, 4CH2 + cyclopropyl CH); 13C NMR
(CDCl3, 67.8 MHz) d (ppm): 187.3 (s), 138.8 (d), 114.0 (t), 96.3 (s), 86.1 (s), 36.5
(s), 33.5 (t), 33.2 (t), 31.9 (t), 30.4 (d), 29.3 (t), 22.1 (t), 21.4 (q), 21.2 (q); HRMS
m/z 188.1582 [M+], C14H20 requires 188.1565. Allene 9: IR (film/cmÀ1
2950, 2854, 2050, 1970; 13C NMR (CDCl3, 67.8 MHz)
) mmax
(ppm): (major
d
diastereoisomer) 196.8 (s), 110.5 (s), 98.9 (s), 44.0 (d), 41.5 (d), 41.4 (d), 32.5
(t), 30.5 (t), 27.3 (t), 27.1 (t), 22.4 (t), 21.5 (q), 21.3 (q), 12.7 (t), 2.1 (q); (minor
diastereoisomer) 197.5 (s), 109.0 (s), 95.8 (s), 44.7 (d), 40.3 (d), 35.8 (d), 35.1
(t), 31.6 (t), 29.7 (t), 28.6 (t), 23.0 (t), 22.0 (q), 21.8 (q), 12.1 (t), 1.9 (q); HRMS
m/z 363.2352 [M+, C23H48Si4– SiMe3], requires 363.2360. Bicyclic 1,3-diene 10:
In summary, a new and interesting carbon radical cyclisation
into an allenecyclopropane unit has been investigated which pro-
vides access to 5,6- and 6,6-ring-fused 1,3-dienes, for example,
11 and 14. Efforts to extend the scope of the method to the synthe-
sis of smaller and larger ring systems instead led to products, for
example, 21 and 16, resulting from alternative reaction pathways.
IR (CHCl3/cmÀ1 max 2949, 2850; 13C NMR (CDCl3, 67.8 MHz) d (ppm) (rotamer
) m
mixture): 139.7 (s), 133.9 (s), 132.7 (s), 131.7 (s), 131.6 (s), 128.7 (s), 126.8 (d),
125.4 (d), 44.5 (d), 41.6 (d), 39.0 (d), 37.0 (d), 34.0 (t), 33.4 (t), 32.0 (t), 31.3 (t),
30.0 (t), 29.6 (t), 27.3 (t), 25.2 (q), 25.1 (q), 23.9 (t), 23.7 (t), 19.8 (q), 19.6 (q),
14.5 (t), 1.4 (q), 1.2 (q); HRMS m/z 436.2816 [M+], C23H48Si4 requires 436.2833.
Bicyclic hydrocarbon 11: IR (CHCl3/cmÀ1 mmax 2917, 2854; 1H NMR (CDCl3,
)
250 MHz) d (ppm): 5.46 (1H, br s, CH@C(CH3)2), 2.04 (2H, m, allylic CH2), 1.85–
1.14 (10H, m, 4CH2 and 2CH), 1.76 (3H, d, J = 1.2 Hz, @CCH3), 1.53 (3H, s,
@CCH3), 1.51 (3H, s, @CCH3); 13C NMR (CDCl3, 67.8 MHz) d (ppm): 133.0 (s),
132.0 (s), 129.0 (s), 125.9 (d), 44.2 (d), 37.1 (d), 31.7 (t), 31.4 (t), 30.9 (t), 26.9
(t), 25.2 (q), 23.8 (t), 20.6 (q), 19.5 (q); HRMS m/z 190.1711 [M+], C14H22
Acknowledgements
We thank AstraZeneca (formerly Zeneca Specialities) for sup-
port (studentship to N.R.J.), and Dr. Alan Chorlton for his interest
in this work.
requires 190.1722. Alkylsilane 16: IR (film/cmÀ1 mmax 2927, 2852, 2005; 1H
)
NMR (CDCl3, 250 MHz) d (ppm): 1.78 (3H, s, CH3), 1.76 (3H, s, CH3), 1.90–1.20
(17H, m, 8CH2 and cyclopropyl CH), 0.74 (2H, m, CH2Si(TMS)3), 0.16 (27H, s,
3Si(CH3)3); 13C NMR (CDCl3, 67.8 MHz) d (ppm): 185.1 (s), 96.9 (s), 89.6 (s),
39.9 (t), 34.4 (t), 29.3 (t), 28.3 (t), 28.0 (s), 26.0 (t), 24.9 (d), 23.7 (t), 21.8 (t),
21.6 (t), 21.4 (q), 7.5 (t), 1.2 (q); HRMS m/z 464.3177 [M+], C25H52Si4 requires
References and notes
464.3146. Iodide 18: IR (CHCl3/cmÀ1 mmax 2932, 2853, 2008, 1602; 1H NMR
)
(CDCl3, 250 MHz) d (ppm): 3.15 (2H, m, CH2CH2I), 1.77 (6H, s, 2CH3), 2.20–1.10
(11H, m, 5CH2 and cyclopropyl CH); 13C NMR (CDCl3, 67.8 MHz) d (ppm): 186.0
(s), 99.0 (s), 88.0 (s), 44.4 (t), 28.9 (s), 27.5 (t), 24.8 (d), 23.4 (t), 21.4 (t), 21.3
(2 Â C, q), 21.2 (t), 2.2 (t); HRMS m/z 302.0474 [M+], C13H19I requires 302.0532.
1. For a comprehensive review of recent advances in the chemistry of allenes see:
Ma, S. Aldrichim. Acta 2007, 40, 91; See also: Ma, S. Chem. Rev. 2005, 105, 2829.
and references cited therein.
2. For some recent surveys see: Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.
Rev. 2003, 103, 1213.
Enyne 21: IR (CHCl3/cmÀ1 mmax 2932, 2862; 1H NMR (CDCl3, 250 MHz) d
)
(ppm): 5.43 (1H, m, C@CH), 2.95 (1H, br s, C„CCH), 2.55 (1H, m, CH(CH3)2),
2.15 (2H, m, C@CCH2), 2.00 (2H, m, C@CCHCH2), 1.76 (2H, m, CH2CH3), 1.55
(2H, m, CH2CH2CH2), 1.15 (6H, d, J = 6.8 Hz, CH(CH3)2), 1.03 (3H, t, J = 7.4 Hz,
CH2CH3); 13C NMR (CDCl3, 67.8 MHz) d (ppm): 139.1 (s), 120.4 (d), 86.0 (s),
81.9 (s), 30.4 (t), 30.1 (d), 28.6 (t), 25.1 (t), 23.4 (2 Â C, q), 20.6 (d), 20.0 (t), 12.3
(q); HRMS m/z 176.1552 [M+], C13H20 requires 176.1565.
3. For a comprehensive summary see: Shi, M.; Lu, J.-M.; Xu, G.-C. Tetrahedron Lett.
2005, 46, 4745.
4. Crandall, J. K.; Tindell, G. L.; Manmade, A. Tetrahedron Lett. 1982, 23, 3769;
Apparu, M.; Crandall, J. K. J. Org. Chem. 1984, 49, 2125; Ayers, T. A.; Crandall, J.
K. Tetrahedron Lett. 1991, 32, 3659; Crandall, J. K.; Mualla, M. Tetrahedron Lett.
1986, 27, 2243.
5. For example: Burnett, D. A.; Choi, J.-K.; Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc.
1984, 106, 8201; Pattenden, G.; Robertson, G. M. Tetrahedron 1985, 41, 4001;
For more recent examples see: Molander, G. A.; Cormier, E. P. J. Org. Chem. 2005,
70, 2622; Watanabe, H.; Mori, N.; Itoh, D.; Kitahara, T.; Mori, K. Angew. Chem.,
Int. Ed. 2007, 46, 1512; Shen, L.; Hsung, R. P. Org. Lett. 2005, 7, 775; Alaide, B.;
Almendros, P.; Aragoncillo, C.; Redondo, M. C. J. Org. Chem. 2007, 21, 1238.
14. The 1H NMR spectra recorded for compounds 9, 10 and 13 could not be
analysed in detail due to the complicated, overlapping, resonances over the
region d 0.74–1.74 ppm.
15. cf. Journet, M.; Malacria, M. Tetrahedron Lett. 1992, 33, 1893; Huang, X. L.;
Dannenburg, J. J. J. Org. Chem. 1991, 56, 5421; For a discussion see: Fossey, J.;
Lefort, D.; Sorba, J. Free Radicals in Organic Chemistry; John Wiley & Sons, 1995.