Communication
Organic & Biomolecular Chemistry
Chem. Soc., 2001, 123, 11815–11816; (c) B. Bilgicer and
K. Kumar, Tetrahedron, 2002, 58, 4105–4112.
2 (a) H.-Y. Lee, K.-H. Lee, H. M. Al-Hashimi and
E. N. G. Marsh, J. Am. Chem. Soc., 2006, 128, 337–343;
(b) M. Salwiczek and B. Koksch, ChemBioChem, 2009, 10,
Chem., 1995, 38, 2292–2301; (d) L. R. Pratt, Annu. Rev. Phys.
Chem., 1985, 36, 433–449; (e) A. Ben-Naim, Hydrophobic
Interactions, Plenum Press, 1980; (f) C. Tanford, The
Hydrophobic Effect: Formation of Micelles and Biological
Membranes 2d Ed, J. Wiley, 1980.
2867–2870; (c) B. C. Buer, B. J. Levin and E. N. G. Marsh, 11 J. C. Biffinger, H. W. Kim and S. G. DiMagno,
J. Am. Chem. Soc., 2012, 134, 13027–13034; (d) B. C. Buer, ChemBioChem, 2004, 5, 622–627.
J. L. Meagher, J. A. Stuckey and E. N. G. Marsh, Proc. Natl. 12 D. S. Lim, J.-H. Lin and J. T. Welch, Eur. J. Org. Chem.,
Acad. Sci. U. S. A., 2012, 109, 4810–4815. 2012, 3946–3954.
3 (a) H. Yang, C. Tian, D. Qiu, H. Tian, G. An and G. Li, Org. 13 (a) Automated NMR Structure Calculation With CYANA, ed. P.
Chem. Front., 2019, 6, 2365–2370; (b) L. Zhu, J. Xiong, J. An,
N. Chen, J. Xue and X. Jiang, Org. Biomol. Chem., 2019, 17,
3797–3804; (c) Y.-G. Lou, A.-J. Wang, L. Zhao, L.-F. He,
Güntert, 2004; (b) P. Guntert, in Protein NMR Spectroscopy:
Practical Techniques and Applications, John Wiley & Sons,
Ltd, 2011, pp. 159–192.
X.-F. Li, C.-Y. He and X. Zhang, Chem. Commun., 2019, 55, 14 (a) J. T. Welch, in Fluorine in Pharmaceutical and Medicinal
3705–3708; (d) C. Odar, M. Winkler and B. Wiltschi,
Biotechnol. J., 2015, 10, 427–446; (e) E. N. G. Marsh, Acc.
Chem. Res., 2014, 47, 2878–2886; (f) M. Salwiczek,
E. Nyakatura, U. I. M. Gerling, S. Ye and B. Koksch, Chem.
Soc. Rev., 2012, 41, 2135–2171; (g) U. I. M. Gerling,
M. Salwiczek, C. D. Cadicamo, H. Erdbrink, C. Czekelius,
S. L. Grage, P. Wadhwani, A. S. Ulrich, M. Behrends,
Chemistry: From Biophysical Aspects to Clinical Applications,
ed. V. Gouverneur and K. Muelller, Imperial College Press
Co., 2012, vol. 5, pp. 171–204; (b) C. N. von Hahmann,
P. R. Savoie and J. T. Welch, Curr. Org. Chem., 2015, 19,
1592–1618; (c) P. R. Savoie and J. T. Welch, Chem. Rev.,
2015, 115, 1130–1190; (d) S. Altomonte and M. Zanda,
J. Fluorine Chem., 2012, 143, 57–93.
G. Haufe and B. Koksch, Chem. Sci., 2014, 5, 819–830; 15 T. R. Hoye, C. S. Jeffrey and F. Shao, Nat. Protoc., 2007, 2,
(h) A. A. Berger, J.-S. Voeller, N. Budisa and B. Koksch, Acc.
Chem. Res., 2017, 50, 2093–2103.
4 (a) M. A. Molski, J. L. Goodman, C. J. Craig, H. Meng,
K. Kumar and A. Schepartz, J. Am. Chem. Soc., 2010, 132,
2451.
16 J. Cavanagh, W. Fairbrother, A. G. Palmer, III and
N. Skelton, Protein NMR Spectroscopy: Principles and
Practice, Academic, San Diego, 1995.
3658–3659; (b) L. Merkel and N. Budisa, Org. Biomol. 17 (a) P. Güntert, in BioNMR in Drug Research, Wiley-VCH
Chem., 2012, 10, 7241–7261; (c) E. K. Nyakatura,
O. Reimann, T. Vagt, M. Salwiczek and B. Koksch, RSC
Adv., 2013, 3, 6319–6322; (d) C. Jäckel, M. Salwiczek and
B. Koksch, Angew. Chem., Int. Ed., 2006, 45, 4198–4203.
Verlag GmbH & Co. KGaA, 2003, pp. 39–66; (b) P. Guntert,
Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, 105–125;
(c) C. Mumenthaler, P. Güntert, W. Braun and K. Wüthrich,
J. Biomol. NMR, 1997, 10, 351–362.
5 H.-P. Chiu, Y. Suzuki, D. Gullickson, R. Ahmad, B. Kokona, 18 T. Ikeya, J.-G. Jee, Y. Shigemitsu, J. Hamatsu, M. Mishima,
R. Fairman and R. P. Cheng, J. Am. Chem. Soc., 2006, 128,
15556–15557.
Y. Ito, M. Kainosho and P. Güntert, J. Biomol. NMR, 2011,
50, 137–146.
6 (a) S. S. Pendley, Y. B. Yu and T. E. Cheatham, 3rd, Proteins, 19 G. Cornilescu, F. Delaglio and A. Bax, J. Biomol. NMR, 1999,
2009, 74, 612–629; (b) C. Jaeckel, W. Seufert, S. Thust and
B. Koksch, ChemBioChem, 2004, 5, 717–720.
13, 289–302.
20 (a) M. Cametti, B. Crousse, P. Metrangolo, R. Milani and
G. Resnati, Chem. Soc. Rev., 2012, 41, 31–42;
(b) D. P. Curran, in Handbook of Fluorous Chemistry, Wiley-
VCH Verlag GmbH & Co. KGaA, 2004, pp. 128–155;
(c) I. T. Horvath, D. P. Curran and J. A. Gladysz, in
Handbook of Fluorous Chemistry, Wiley-VCH Verlag GmbH &
Co. KGaA, 2004, pp. 1–4; (d) K. Olofsson and M. Larhed, in
Handbook of Fluorous Chemistry, Wiley-VCH Verlag GmbH &
Co. KGaA, 2004, pp. 359–365; (e) J.-M. Vincent, Chem.
Commun., 2012, 48, 11382–11391; (f) W. Zhang, in Current
Fluoroorganic Chemistry, ACS Symp. Ser., American
Chemical Society, 2007, vol. 949, pp. 207–220.
7 (a) S. Son, I. C. Tanrikulu and D. A. Tirrell, ChemBioChem,
2006, 7, 1251–1257; (b) B. C. Buer, R. de la Salud-Bea,
H. M. Al Hashimi and E. N. G. Marsh, Biochemistry, 2009,
48, 10810–10817; (c) J. K. Montclare, S. Son, G. A. Clark,
K. Kumar and D. A. Tirrell, ChemBioChem, 2009, 10, 84–86.
8 A. Ikeda, L. Zhong, P. R. Savoie, C. N. von Hahmann,
W. Zheng and J. T. Welch, Eur. J. Org. Chem., 2018, 772–780.
9 P. Kirsch and A. Hahn, Eur. J. Org. Chem., 2006, 1125–1131.
10 (a) K. A. Dill, Biochemistry, 1990, 29, 7133–7155;
(b) P. L. Privalov and S. J. Gill, Adv. Protein Chem., 1988, 39,
191–234; (c) J. Gao, S. Qiao and G. M. Whitesides, J. Med.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2019