lower steric bulk of the monomethylanilinyl group, which allows
this closer approach, may actually work to the detriment of the
system, owing to the lower lability of these groups. What effects
the two competing influences will have must await subsequent
reactivity studies.
12 J. Andrieu, P. Braunstein, A. Tiripicchio and F. Ugozzoli, Inorg. Chem.,
1996, 35, 5975–5985.
13 T. K. Ronson, H. Adams and M. D. Ward, Inorg. Chim. Acta, 2005,
358, 1943–1954.
14 M. A. Jalil, S. Fujinami, T. Honjo and H. Nishikawa, Polyhedron, 2001,
20, 1071–1078.
15 K. Mashima, Y. Kaneda, A. Fukumoto, M. Tanaka, K. Tani, H.
Nakano and A. Nakamura, Inorg. Chim. Acta, 1998, 270, 459–
466.
16 M. E. Broussard, B. Juma, S. G. Train, W.-J. Peng, S. A. Laneman and
G. G. Stanley, Science, 1993, 260, 1784–1788.
17 J. P. Farr, M. M. Olmstead, C. H. Hunt and A. L. Balch, Inorg. Chem.,
1981, 20, 1182–1187.
18 F. E. Wood, J. Hvoslef, H. Hope and A. L. Balch, Inorg. Chem., 1984,
23, 4309–4315.
19 J. C. Jeffrey and T. B. Rauchfuss, Inorg. Chem., 1979, 18, 2658–2666.
20 C. S. Slone, D. A. Weinberger and C. A. Mirkin, Prog. Inorg. Chem.,
1999, 48, 233–350.
Our failure to prepare cationic, halide-bridged species probably
results from the strain inherent in such a product, in which the
halide bridge would be required to lie opposite both ends of the
bridging diphosphine. In addition, the staggered arrangement of
the Rh coordination planes in the dichloro precursor (10) appears
necessary in order to minimize unfavorable contacts between
these planes. Replacement of one chloride ligand by a bridging
arrangement of the remaining chloride would force an eclipsed
conformation of the planes leading to a closer and less favorable
approach of the anilinyl and carbonyl groups on adjacent metals.
Nevertheless, it should still be possible to achieve an anion-bridged
structure through the use of bidentate groups such as acetates,
which should give rise to less strain while maintaining more
favorable contacts between the planes, although we have until now
failed to isolate such species in this chemistry.
The subsequent chemistries of the mapm-bridged species 10 and
12–14 will be investigated in order to determine whether ligand
hemilability and effects of metal–metal cooperativity will play a
role. Furthermore, the potential of using the acetate moieties in 14
as an internal base for deprotonation of one or more of the amine
groups to generate catalytically active amido-rhodium species51 is
an immediate goal of these studies.
21 P. Braunstein and F. Naud, Angew. Chem., Int. Ed., 2001, 40, 680–699.
22 P. Espinet and K. Soulantica, Coord. Chem. Rev., 1999, 193–195, 499–
556.
23 P. Braunstein, J. Organomet. Chem., 2004, 689, 3953–3967.
24 J. Andrieu, J.-M. Camus, P. Richard, R. Poli, L. Gonsalvi, F. Vizza and
M. Peruzzini, Eur. J. Inorg. Chem., 2006, 51–61.
25 A. Bader and E. Lindner, Coord. Chem. Rev., 1991, 108, 27–110.
26 H. Yang, M. Alvarez-Gressier, N. Lugan and R. Mathieu,
Organometallics, 1997, 16, 1401–1409.
27 F. Speiser, P. Braunstein and L. Saussine, Organometallics, 2004, 23,
2625–2632.
28 M. Bassetti, Eur. J. Inorg. Chem., 2006, 4473–4482.
29 H. Yang, N. Lugan and R. Mathieu, Organometallics, 1997, 16, 2089–
2095.
30 R. Ferna´ndez-Gala´n, F. A. Jalo´n, B. R. Manzano and J. Rodr´ıguez-de
la Fuente, Organometallics, 1997, 16, 3758–3768.
31 M. P. Anderson, A. L. Casalnuovo, B. J. Johnson, B. M. Mattson,
A. M. Mueting and L. H. Pignolet, Inorg. Chem., 1988, 27, 1649–
1658.
Acknowledgements
32 J. C. Jeffrey, T. B. Rauchfuss and P. A. Tucker, Inorg. Chem., 1980, 19,
3306–3315.
We thank the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the University of Alberta for financial
support for this research and NSERC for funding the Bruker
PLATFORM/SMART 1000 CCD diffractometer, the Bruker
D8/APEX II CCD diffractometer and the Nicolet Avatar IR
spectrometer. We thank the Department’s Analytical and Instru-
mentation Laboratory for performing elemental analyses as well
as the NMR Spectroscopy Laboratory and Mr Rahul Samant for
assistance with variable temperature NMR spectroscopic analyses
and helpful discussions. We thank Dr Guy Bernard for carrying
out 31P NMR spectral simulations.
33 I. Bertini, P. Dapporto, G. Fallani and L. Sacconi, Inorg. Chem., 1971,
10, 1703–1707.
34 A. Del Zotto, G. Nardin and P. Rigo, J. Chem. Soc., Dalton Trans.,
1995, 3343–3351.
35 K. V. Baker, J. M. Brown, N. A. Cooley, G. D. Hughes and R. J. Taylor,
J. Organomet. Chem., 1989, 370, 397–406.
36 K. Tani, M. Yabuta, S. Nakamura and T. Yamagata, J. Chem. Soc.,
Dalton Trans., 1993, 2781–2789.
37 M. Habib, H. Trujillo, C. A. Alexander and B. N. Storhoff, Inorg.
Chem., 1985, 24, 2344–2349.
38 J. P. Farr, F. E. Wood and A. L. Balch, Inorg. Chem., 1983, 22, 3387–
3393.
39 B. R. Aluri, M. K. Kindermann, P. G. Jones, I. Dix and J. Heinicke,
Inorg. Chem., 2008, 47, 6900–6912.
40 M. T. Whited, E. Rivard and J. C. Peters, Chem. Commun., 2006, 1613–
1615.
References
41 M. D. Fryzuk and P. A. MacNeil, J. Am. Chem. Soc., 1981, 103, 3592–
3593.
42 D. Soulivong, C. Wieser, M. Marcellin, D. Matt, A. Harriman and L.
Toupet, J. Chem. Soc., Dalton Trans., 1997, 2257–2262.
43 J. N. L. Dennett, M. Bierenstiel, M. J. Ferguson, R. McDonald and M.
Cowie, Inorg. Chem., 2006, 45, 3705–3717.
1 A. M. Sargeson, Pure Appl. Chem., 1984, 56, 1603–1619.
2 S. J. Archibald, Annu. Rep. Prog. Chem., Sect. A, 2007, 103, 264–286.
3 F. T. Edelmann, Angew. Chem., Int. Ed., 2001, 40, 1656–1660.
4 M. Albrecht and G. van Koten, Angew. Chem., Int. Ed., 2001, 40,
3750–3781.
44 N. D. Jones, P. Meessen, M. B. Smith, U. Losehand, S. J. Rettig, B. O.
Patrick and B. R. James, Can. J. Chem., 2002, 80, 1600–1606.
45 N. D. Jones and B. R. James, Adv. Synth. Catal., 2002, 344, 1126–1134.
46 S. J. L. Foo, N. D. Jones, B. O. Patrick and B. R. James, Chem. Commun.,
2003, 988–989.
5 M. M. Taqui Khan and A. E. Martell, Inorg. Chem., 1974, 13, 2961–
2966.
6 C. A. Bessel, P. Aggarwal, A. C. Marschilok and K. J. Takeuchi, Chem.
Rev., 2001, 101, 1031–1066.
7 J.-C. Hierso, R. Smaliy, R. Amardeil and P. Meunier, Chem. Soc. Rev.,
2007, 36, 1754–1769.
8 J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry:
Principles of Structure and Reactivity, HarperCollins, New York, 4th
edn, 1993, pp. 522–524.
9 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99–127.
10 B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 1988,
86, 191–243.
47 N. D. Jones, S. J. L. Foo, B. O. Patrick and B. R. James, Inorg. Chem.,
2004, 43, 4056–4063.
48 N. D. Jones, P. Meessen, U. Losehand, B. O. Patrick and B. R. James,
Inorg. Chem., 2005, 44, 3290–3298.
49 S. E. Clapham, A. Hadzovic and R. H. Morris, Coord. Chem. Rev.,
2004, 248, 2201–2237.
50 R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008–2022.
51 P. Maire, T. Bu¨ttner, F. Breher, P. Le Floch and H. Gru¨tzmacher, Angew.
Chem., Int. Ed., 2005, 44, 6318–6323.
11 A. L. Balch, L. A. Fossett, R. R. Guimerans and M. M. Olmstead,
Organometallics, 1985, 4, 781–788.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 4213–4226 | 4225
©