Chemical Research in Toxicology
Article
5-thio-2-nitrobenzoic acid and reduced glutathione. Chem. Res. Toxicol.
22, 1833−1840.
(47) Assmann, A., Briviba, K., and Sies, H. (1998) Reduction of
methionine selenoxide to selenomethionine by glutathione. Arch.
Biochem. Biophys. 349, 201−203.
(48) Nagy, P., Beal, J. L., and Ashby, M. T. (2006) Thiocyanate is an
efficient endogenous scavenger of the phagocytic killing agent
hypobromous acid. Chem. Res. Toxicol. 19, 587−593.
(49) Ashby, M. T., Carlson, A. C., and Scott, M. J. (2004) Redox
buffering of hypochlorous acid by thiocyanate in physiologic fluids. J.
Am. Chem. Soc. 126, 15976−15977.
(50) Krause, R. J., and Elfarra, A. A. (2009) Reduction of L-
methionine selenoxide to seleno-L-methionine by endogenous thiols,
ascorbic acid, or methimazole. Biochem. Pharmacol. 77, 134−140.
(51) Winterbourn, C. C., and Kettle, A. J. (2000) Biomarkers of
myeloperoxidase-derived hypochlorous acid. Free Radical Biol. Med. 29,
403−409.
(52) Pattison, D. I., Davies, M. J., and Hawkins, C. L. (2012)
Reactions and reactivity of myeloperoxidase-derived oxidants: differ-
ential biological effects of hypochlorous and hypothiocyanous acids.
Free Radical Res. 46, 975−995.
(27) Aune, T. M., and Thomas, E. L. (1978) Oxidation of protein
sulfhydryls by products of peroxidase-catalyzed oxidation of
thiocyanate ion. Biochemistry 17, 1005−1010.
(28) Hawkins, C. L., Pattison, D. I., Stanley, N. R., and Davies, M. J.
(2008) Tryptophan residues are targets in hypothiocyanous acid-
mediated protein oxidation. Biochem. J. 414, 271−280.
(29) Skaff, O., Pattison, D. I., Morgan, P. E., Bachana, R., Jain, V. K.,
Priyadarsini, K. I., and Davies, M. J. (2012) Selenium-containing
amino acids are major targets for myeloperoxidase-derived hypoth-
iocyanous acid: determination of absolute rate constants and
implications for biological damage. Biochem. J. 441, 305−316.
(30) Pattison, D. I., Hawkins, C. L., and Davies, M. J. (2009) What
are the plasma targets of the oxidant hypochlorous acid? A kinetic
modeling approach. Chem. Res. Toxicol. 22, 807−817.
(31) Storkey, C., Davies, M. J., White, J. M., and Schiesser, C. H.
(2011) Synthesis and antioxidant capacity of 5-selenopyranose
derivatives. Chem. Commun. 47, 9693−9695.
(53) Steinmann, D., Nauser, T., and Koppenol, W. H. (2010)
Selenium and sulfur in exchange reactions: a comparative study. J. Org.
Chem. 75, 6696−6699.
(54) Bachrach, S. M., Demoin, D. W., Luk, M., and Miller, J. V., Jr
(2004) Nucleophilic attack at selenium in diselenides and
selenosulfides. A computational study. J. Phys. Chem. A 108, 4040−
4046.
(32) Gomez, A. M., Danelo, G. O., Valverde, S., and Lopez, J. C.
(1999) Improved synthesis of 2, 3: 4, 6-di-O-isopropylidene–
glucopyranose and–galactopyranose. Carbohydr. Res. 320, 138−142.
(33) Nguyen Van Nhien, A., Soriano, E., Marco-Contelles, J., and
Postel, D. (2009) The synthesis of polyoxygenated, enantiomerically
pure cyclopentane derivatives on route to neplanocin A stereoisomers
via alkylidenecarbene species prepared from sugar templates.
Carbohydr. Res. 344, 1605−1611.
(34) Liu, H., and Pinto, B. M. (2006) Synthesis of zwitterionic
selenonium and sulfonium sulfates from D-mannose as potential
glycosidase inhibitors. Can. J. Chem. 84, 497−505.
(35) Litvin, D. (2008) Tables of crystallographic properties of
magnetic space groups. Acta Crystallogr., Sect. A: Found. Crystallogr. 64,
419−424.
(36) Farrugia, L. J. (1999) WinGX suite for small-molecule single-
crystal crystallography. J. Appl. Crystallogr. 32, 837−838.
(37) Morris, J. C. (1966) The acid ionization constant of HOCl from
5 to 35 °C. J. Phys. Chem. 70, 3798−3805.
(38) Pattison, D. I., and Davies, M. J. (2004) A kinetic analysis of the
reactions of hypobromous acid with protein components: implications
for cellular damage and the use of 3-bromotyrosine as a marker of
oxidative stress. Biochemistry 43, 4799−4809.
(39) Lloyd, M. M., van Reyk, D. M., Davies, M. J., and Hawkins, C. L.
(2008) Hypothiocyanous acid is a more potent inducer of apoptosis
and protein thiol depletion in murine macrophage cells than
hypochlorous acid or hypobromous acid. Biochem. J. 414, 271−280.
(40) Hawkins, C. L., and Davies, M. J. (1998) Hypochlorite-induced
damage to proteins: formation of nitrogen-centred radicals from lysine
residues and their role in protein fragmentation. Biochem. J. 332, 617−
625.
(55) Margerum, D. W., and Huff, H. (2002) Role of halogen(I)
cation-transfer mechanisms in water chlorination in the presence of
bromide ion. J. Environ. Monit. 4, 20−26.
(56) Jia, Z., Salaita, M. G., and Margerum, D. W. (2000) Kinetics and
+
mechanisms of the oxidation of hydrazinium ion (N2H5 ) by aqueous
Br2, Cl2, and BrCl. Electrophilicity scale for halogens and
interhalogens. Inorg. Chem. 39, 1974−1978.
(57) Meister, A., and Anderson, M. E. (1983) Glutathione. Annu. Rev.
Biochem. 52, 711−760.
(58) Rees, M. D., Kennett, E. C., Whitelock, J. M., and Davies, M. J.
(2008) Oxidative damage to extracellular matrix and its role in human
pathologies. Free Radical Biol. Med. 44, 1973−2001.
(59) Marsche, G., Semlitsch, M., Hammer, A., Frank, S., Weigle, B.,
Demling, N., Schmidt, K., Windischhofer, W., Waeg, G., and Sattler,
W. (2007) Hypochlorite-modified albumin colocalizes with RAGE in
the artery wall and promotes MCP-1 expression via the RAGE-Erk1/2
MAP-kinase pathway. FASEB J. 21, 1145−1152.
(60) Hawkins, C. L., and Davies, M. J. (1999) Hypochlorite-induced
oxidation of proteins in plasma: formation of chloramines and
nitrogen-centred radicals and their role in protein fragmentation.
Biochem. J. 340, 539−548.
(61) Hawkins, C. L., Pattison, D. I., and Davies, M. J. (2003)
Hypochlorite-induced oxidation of amino acids, peptides and proteins.
Amino Acids 25, 259−274.
(62) Suryo Rahmanto, A., and Davies, M. J. (2011) Catalytic activity
of selenomethionine in removing amino acid, peptide, and protein
hydroperoxides. Free Radical Biol. Med. 51, 2288−2299.
(63) Briviba, K., Roussyn, I., Sharov, V. S., and Sies, H. (1996)
Attenuation of oxidation and nitration reactions of peroxynitrite by
selenomethionine, selenocystine and ebselen. Biochem. J. 319, 13−15.
(64) Assmann, A., Bonifacic, M., Briviba, K., Sies, H., and Asmus, K.
D. (2000) One-electron reduction of selenomethionine oxide. Free
Radical Res. 32, 371−376.
(65) Krause, R. J., Glocke, S. C., Sicuri, A. R., Ripp, S. L., and Elfarra,
A. A. (2006) Oxidative metabolism of seleno-L-methionine to L-
methionine selenoxide by flavin-containing monooxygenases. Chem.
Res. Toxicol. 19, 1643−1649.
(66) Padmaja, S., Squadrito, G. L., Lemercier, J. N., Cueto, R., and
Pryor, W. A. (1996) Rapid oxidation of DL-selenomethionine by
peroxynitrite. Free Radical Biol. Med. 21, 317−322.
(41) Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-
Rudolf, V., and Reiner, E. (2003) Molar absorption coefficients for the
reduced Ellman reagent: reassessment. Anal. Biochem. 312, 224−227.
(42) Pattison, D. I., and Davies, M. J. (2001) Absolute rate constants
for the reaction of hypochlorous acid with protein side chains and
peptide bonds. Chem. Res. Toxicol. 14, 1453−1464.
(43) Skaff, O., Pattison, D. I., and Davies, M. J. (2007) Kinetics of
hypobromous acid-mediated oxidation of lipid components and
antioxidants. Chem. Res. Toxicol. 20, 1980−1988.
(44) Skaff, O., Pattison, D. I., and Davies, M. J. (2008) The vinyl
ether linkages of plasmalogens are favored targets for myeloperoxidase-
derived oxidants: a kinetic study. Biochemistry 47, 8237−8245.
(45) Hawkins, C. L., Morgan, P. E., and Davies, M. J. (2009)
Quantification of protein modification by oxidants. Free Radical Biol.
Med. 46, 965−988.
(46) Talib, J., Pattison, D. I., Harmer, J. A., Celermajer, D. S., and
Davies, M. J. (2012) High plasma thiocyanate levels modulate protein
damage induced by myeloperoxidase and perturb measurement of 3-
chlorotyrosine. Free Radical Biol. Med. 53, 20−29.
2599
dx.doi.org/10.1021/tx3003593 | Chem. Res. Toxicol. 2012, 25, 2589−2599