P. N. Collier / Tetrahedron Letters 50 (2009) 3909–3911
3911
M.; Muller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M.
Angew. Chem., Int. Ed. 2006, 45, 7736–7739.
Br
Br
(i)-(iii)
8. General procedure, method A (for compound 6): To a solution of [Rh(cod)Cl]2
(6.1 mg, 0.012 mmol) in 1,4-dioxane (1 mL) was added aqueous KOH (1.5 M,
0.553 mmol, 0.829 mmol). After stirring for 5 min, 3-methoxyphenylboronic
acid (126 mg, 0.829 mmol) and then alkene 3 (100 mg, 0.414 mmol) in THF
(1.5 mL) were added in rapid succession. The reaction mixture was irradiated
with microwaves (300 W) at 100 °C for 5 min, then diluted with water and
extracted with EtOAc (2 Â 20 mL). The combined organics were dried
(magnesium sulfate), filtered and concentrated. Purification by column
chromatography (3:1, petroleum ether/EtOAc) gave adduct 6 (130 mg, 90%)
as a colourless oil. General procedure, method B (for compound 10): To a solution
CO2Et
BocN
HN
19
13
Scheme 4. Reagents and conditions: (i) DIBAL-H, DCM, À78 °C, 1 h, 81%; (ii)
ClRh(PPh3)3, toluene, 4 h, reflux; (iii) TFA, Et3SiH, DCM, 44% (two steps).
of alkene
1.24 mmol) and K2CO3 (172 mg, 1.24 mmol) in THF (4 mL) and 2-propanol
(75 mg, 1.24 mmol) was added solution of [Rh(cod)Cl]2 (10.1 mg,
0.021 mmol) in THF (1.5 mL) under nitrogen. The reaction was heated at
60 °C for 2 h and then worked-up as in method A. Purification by column
chromatography (3:1, petroleum ether/EtOAc) gave adduct 10 (110 mg, 73%) as
a colourless oil.
3 (100 mg, 0.414 mmol), 3-nitrophenylboronic acid (207 mg,
H
H
N
N
a
(i)
(ii), (iii)
CO2Et
CO2Et
N
Ph
O
N
N
Ph
Ph
Ph
Ph
9. NMR data of some representative compounds: compound 3: 1H NMR (400 MHz,
CDCl3): d 1.30 (3H, t, J = 9.2 Hz), 1.48 (9H, s), 4.20 (2H, q, J = 9.2 Hz), 4.60–4.63
(2H, m), 4.82–4.86 (2H, m), 5.77–5.79 (1H, m); 13C NMR (100 MHz, CDCl3): d
14.7, 28.7 (3C), 58.3 (2C), 60.8, 80.6, 114.1, 152.9, 156.7, 165.7; Compound 6: 1H
NMR (400 MHz, CDCl3): d 1.15 (3H, t, J = 7.0 Hz), 1.46 (9H, s), 2.96 (2H, s), 3.82
(3H, s), 4.03 (2H, q, J = 7.0 Hz), 4.21 (2H, d, J = 9.0 Hz), 4.27 (2H, d, J = 9.0 Hz),
6.74 (1H, s), 6.78–6.81 (2H, m), 7.25–7.29 (1H, m); 13C NMR (100 MHz, CDCl3):
d 14.5, 28.8 (3C), 40.1, 46.1, 55.6, 60.0 (2C, br s), 60.8, 80.0, 112.3, 112.7, 118.7,
129.9, 146.0, 156.8, 160.0, 170.8; Compound 10: 1H NMR (400 MHz, CDCl3): d
1.08 (3H, t, J = 7.2 Hz), 1.39 (9H, s), 2.97 (2H, s), 3.95 (2H, q, J = 7.2 Hz), 4.16 (2H,
d, J = 8.8 Hz), 4.21 (2H, d, J = 8.8 Hz), 7.44–7.53 (2H, m), 8.00–8.06 (2H, m); 13C
NMR (100 MHz, CDCl3): d 14.4, 28.7 (3C), 39.9, 45.6, 60.5 (2C, br s), 61.2, 80.5,
121.8, 122.4, 130.0, 133.0, 146.5, 148.7, 156.6, 170.3; Compound 12: 1H NMR
(400 MHz, CDCl3): d 1.10 (3H, t, J = 7.2 Hz), 1.46 (9H, s), 2.22 (3H, s), 2.97 (2H,
s), 3.98 (2H, q, J = 7.2 Hz), 4.23–4.25 (2H, m), 4.33 (2H, d, J = 8.4 Hz), 7.04–7.07
(1H, m), 7.14–7.18 (3H, m); 13C NMR (100 MHz, CDCl3): d 14.4, 20.0, 28.8 (3C),
41.1, 44.2, 59.9 (2C, br s), 60.8, 80.1, 126.2, 127.6, 128.0, 131.8, 135.3, 141.1,
157.1, 170.9; Compound 19: 1H NMR (400 MHz, DMSO): d 1.51 (3H, br s), 3.21–
3.85 (4H, br m), 7.23 (1H, d, J = 7.5 Hz), 7.29 (1H, t, J = 7.5 Hz), 7.38–7.41 (2H,
m); 13C NMR (100 MHz, DMSO): d 16.9, 28.9, 59.4 (2C, br s), 122.2, 124.7, 127.7,
128.4, 129.0, 130.9; Compound 21: 1H NMR (400 MHz, DMSO): d 3.21 (2H, d,
J = 7.2 Hz), 3.30 (2H, d, J = 7.2 Hz), 3.39 (2H, s), 4.61 (1H, s), 7.17 (2H, t,
J = 7.2 Hz), 7.24–7.40 (6H, m), 7.49 (4H, d, J = 7.2 Hz), 7.59 (1H, d, J = 6.4 Hz),
7.92 (1H, s), 12.13 (1H, br s); 13C NMR (100 MHz, DMSO): d 39.7, 51.9, 65.1,
76.5, 110.7, 113.4, 116.5, 124.2, 125.5, 127.3, 127.5, 128.5, 128.8, 134.0 (2C),
142.8, 191.4.
Ph
5
20
21
Scheme 5. Reagents and conditions: (i) indole-4-boronic acid, cat. [Rh(cod)Cl]2, aq
KOH, dioxane, 100 °C, microwave, 84%; (ii) 5 M KOH, 1,4-dioxane, reflux; (iii)
polyphosphoric acid, 100 °C, 47% (two steps).
In summary, we have developed a practical and efficient route
to 3-aryl-3-azetidinyl acetic acid esters by rhodium-catalysed con-
jugate addition of organoboron reagents to a,b-unsaturated esters
derived from N-protected-3-azetidinone. The wide scope of the
procedure allowed for the preparation of a range of 3,3-disubsti-
tuted azetidines for biological testing in our research programmes.
Acknowledgements
I would like to thank Drs. J. Golec, S. Young and J.-M. Jimenez for
helpful discussions.
References and notes
1. Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988–4035, and
references therein.
2. Bishop, D. C.; Cavalla, J. F.; Lockhart, L. M.; Wright, M.; Winder, C. V.; Wong, A.;
Stephens, M. J. Med. Chem. 1968, 11, 466–470.
3. Yang, H.; Kazmierski, M. W.; Aquino J. C.; (Smithkline Beecham Corp., US).
Application: WO2004055016, 2003-US039618 2003. Chem. Abstr. 2004, 141,
89006.
10. Iyer, P. S.; O’Malley, M. M.; Lucas, M. C. Tetrahedron Lett. 2007, 48, 4413–4418.
11. Brock, S.; Hose, D. R. J.; Moseley, J. D.; Parker, A. J.; Patel, I.; Williams, A. J. Org.
Process Res. Dev. 2008, 12, 496–502.
12. Williams, A.; Patel, I.; Oldfield, J.; (AstraZeneca Ltd, UK). Application:
WO2007057643, 2006-GB004205 2006. Chem. Abstr. 2007, 147, 9654.
13. Boiteau, J.-G.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 681–
684.
4. Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829–2844.
5. Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196.
6. N-Boc-3-azetidinone is commercially available from a number of suppliers.
7. One example of rhodium-catalysed conjugate addition of a boronic acid to the
corresponding oxetane has been reported, see: Wuitschik, G.; Rogers-Evans,
14. Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852–6856.
15. Abarca, B.; Ballesteros, R.; Blanco, F.; Bouillon, A.; Collot, V.; Dominguez, J.-R.;
Lancelot, J.-C.; Rault, S. Tetrahedron 2004, 60, 4887–4893.
16. Schreiber, S. L. Science 2000, 287, 1964–1969.
17. Spandl, R. J.; Bender, A.; Spring, D. R. Org. Biomol. Chem. 2008, 6, 1149–1158.