Article
In several recent publications we described the results of
Organometallics, Vol. 28, No. 14, 2009 4211
Chart 1
spectroscopic studies that have characterized properties of
triplet excitons in platinum acetylide oligomers and poly-
mers.16-18 In addition, we have also carried out pulse radi-
olysis24 investigations to characterize the spectroscopy and
spatial extent of negative ion-radicals (polarons) produced
by reduction of the platinum acetylide chains.25 Taken
together, the spectroscopic and pulse radiolysis studies
reveal that triplet excitons and negative polarons are spa-
tially confined on the platinum acetylide chain, being delo-
calized over a segment corresponding to approximately a
single repeat unit, e.g., [-Pt-CtC-Ph-CtC-Pt-], where
Ph=1,4-phenylene.18,25 As a continuation of that work, we
are interested in developing long platinum acetylide oligo-
mers that are end-capped with molecular units that can act as
“traps” for triplet excitons or negative polarons produced on
the chains. Time-resolved spectroscopic studies of such end-
capped oligomers carried out using laser flash photolysis and
pulse radiolysis will provide considerable insight concerning
the dynamics of triplet exciton and negative polaron diffu-
sion along the π-conjugated chain.
In this paper we describe synthetic work carried out
toward the objective of synthesizing a series of monodisperse
platinum acetylide oligomers that are end-capped with
naphthalene diimide units, PtnNDI2, Chart 1. The objective
of the synthetic efforts was to prepare relatively long oligo-
mers, in order to enhance the opportunity to measure the
dynamics of exciton and polaron hopping along the chains.26-30
The synthetic method that was used to prepare these oligo-
mers is based on an iterative-convergent approach, which
was implemented via application of an organometallic syn-
thon that features orthogonally protected terminal acetyl-
enes. While there has been considerable research carried out
concerning the synthesis of monodisperse, organic π-con-
jugated oligomers,2,31-37 fewer studies have described the
preparation of oligomers that contain metal centers in the
π-conjugated sequence.9,16,38-51 This work is significant, as
the protecting group approach that is developed is general
and could be used toward the synthesis of a variety of
platinum acetylide based oligomers and dendrimers.
Results and Discussion
Molecular and Synthetic Design. The structures of the
PtnNDI2 oligomers (n=2, 3, 6, and 10) synthesized in the
course of this work are shown in Chart 1. Each of these
oligomers features a platinum acetylide chain with the repeat
unit structure [-Pt(PBu3)2-CtC-Ph-CtC-] (Ph =1,4-
phenylene) end-capped with 1,4,5,8-naphthalenediimide
(NDI) units. The NDI unit is used as the end-cap, as this
moiety is reduced at a relatively low potential, making it a
good electron acceptor for trapping negative polarons or
triplet excitons produced on the chains by pulse radiolysis or
optical excitation, respectively.52,53 The previously synthe-
sized dimeric complex Pt-216,25 was used as a reference
compound for photophysical characterization of the series.
Preparation of the longer oligomers (i.e., n = 6 and 10)
presented an interesting synthetic challenge. Consideration
of the problem suggested three basic synthetic strategies that
could be used. The simplest approach would be a fractiona-
tion method.2 Here, a short-lived AA/BB type polymeriza-
tion reaction of Pt(PBu3)2Cl2 and 1,4-diethynylbenzene
(24) Wishart, J. F.; Cook, A. R.; Miller, J. R. Rev. Sci. Instrum. 2004,
75, 4359–4366.
(25) Cardolaccia, T.; Funston, A. M.; Kose, M. E.; Keller, J. M.;
Miller, J. R.; Schanze, K. S. J. Phys. Chem. B 2007, 111, 10871–10880.
(26) Beljonne, D.; Pourtois, G.; Silva, C.; Hennebicq, E.; Herz, L. M.;
Friend, R. H.; Scholes, G. D.; Setayesh, S.; Mullen, K.; Bredas, J. L.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10982–10987.
(27) Hennebicq, E.; Pourtois, G.; Scholes, G. D.; Herz, L. M.;
Russell, D. M.; Silva, C.; Setayesh, S.; Grimsdale, A. C.; Mullen, K.;
Bredas, J. L.; Beljonne, D. J. Am. Chem. Soc. 2005, 127, 4744–4762.
(28) Funston, A. M.; Silverman, E. E.; Miller, J. R.; Schanze, K. S. J.
Phys. Chem. B 2004, 108, 1544–1555.
(42) Atherton, Z.; Faulkner, C. W.; Ingham, S. L.; Kakkar, A. K.;
Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. J. Organomet. Chem.
1993, 462, 265–270.
(29) Funston, A. M.; Silverman, E. E.; Schanze, K. S.; Miller, J. R. J.
Phys. Chem. B 2006, 110, 17736–17742.
(43) Irwin, M. J.; Jia, G.; Vittal, J. J.; Puddephatt, R. J. Organome-
tallics 1996, 15, 5321–5329.
(30) Asaoka, S.; Takeda, N.; Lyoda, T.; Cook, A. R.; Miller, J. R. J.
Am. Chem. Soc. 2008, 130, 11912–11920.
(31) Ziener, U.; Godt, A. J. Org. Chem. 1997, 62, 6137–6143.
(32) Kukula, H.; Veit, S.; Godt, A. Eur. J. Org. Chem. 1999, 277–286.
(33) Shortell, D. B.; Palmer, L. C.; Tour, J. M. Tetrahedron 2001, 57,
9055–9065.
(34) Maya, F.; Tour, J. M. Tetrahedron 2004, 60, 81–92.
(35) Flatt, A. K.; Dirk, S. M.; Henderson, J. C.; Shen, D. E.; Su, J.;
Reed, M. A.; Tour, J. M. Tetrahedron 2003, 59, 8555–8570.
(36) Flatt, A. K.; Yao, Y. X.; Maya, F.; Tour, J. M. J. Org. Chem.
2004, 69, 1752–1755.
(37) Bauerle, P.; Fischer, T.; Bidlingmeier, B.; Stabel, A.; Rabe, J. P.
Angew. Chem., Int. Ed. Engl. 1995, 34, 303–307.
(38) Onitsuka, K.; Fujimoto, M.; Ohshiro, N.; Takahashi, S. Angew.
Chem., Int. Ed. 1999, 38, 689–692.
(39) Fyfe, H. B.; Mlekuz, M.; Zargarian, D.; Taylor, N. J.; Marder, T.
B. J. Chem. Soc., Chem. Commun. 1991, 188–190.
(44) Wilson, J. S.; Kohler, A.; Friend, R. H.; Al-Suti, M. K.;
Al-Mandhary, M. R. A.; Khan, M. S.; Raithby, P. R. J. Chem. Phys.
2000, 113, 7627–7634.
(45) Long, N. J.; White, A. J. P.; Williams, D. J.; Younus, M. J.
Organomet. Chem. 2002, 649, 94–99.
(46) Fratoddi, I.; Battocchio, C.; Furlani, A.; Mataloni, P.;
Polzonetti, G.; Russo, M. V. J. Organomet. Chem. 2003, 674, 10–23.
ꢀ
(47) Vicente, J.; Chicote, M. T.; Alvarez-Falcon, M. M.; Abrisqueta,
M.-D.; Hernandez, F. J.; Jones, P. G. Inorg. Chim. Acta 2003, 347, 67–
ꢀ
74.
(48) La Groia, A.; Ricci, A.; Bassetti, M.; Masi, D.; Bianchini, C.; Lo
Sterzo, C. J. Organomet. Chem. 2003, 683, 406–420.
(49) Long, N. J.; Wong, C. K.; White, A. J. P. Organometallics 2006,
25, 2525–2532.
(50) Vicente, J.; Chicote, M.-T.; Alvarez-Falcon, M. M.; Jones, P. G.
Organometallics 2005, 24, 2764–2772.
(51) Vicente, J.; Chicote, M.-T.; Alvarez-Falcon, M. M.; Jones, P. G.
Organometallics 2005, 24, 5956–5963.
(52) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R.
J. Am. Chem. Soc. 1996, 118, 6767–6777.
(40) Khan, M. S.; Davies, S. J.; Kakkar, A. K.; Schwartz, D.; Lin, B.;
Johnson, B. F. G.; Lewis, J. J. Organomet. Chem. 1992, 424, 87–97.
(41) Khan, M. S.; Kakkar, A. K.; Ingham, S. L.; Raithby, P. R.;
Lewis, J.; Spencer, B.; Wittmann, F.; Friend, R. H. J. Organomet. Chem.
1994, 472, 247–255.
(53) Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B
2000, 104, 931–940.