V. Mahalingam et al. / Polyhedron 28 (2009) 1532–1540
1539
bance as increasing amounts of DNA were added, and the results
References
are recorded in Table 6. Fig. 3 shows the absorption titration curves
for complex 6. Complex 4 did not show any appreciable change in
absorption during titration. All the other complexes showed con-
siderable hyperchromism with a small red shift or blue shift. Com-
plexes 2, 5, 6 and 7 showed bathochromic shifts, with the
difference between the absorption maximum of the unbound and
fully bound complex being 13, 6, 5 and 8 nm, respectively, while
the other two complexes, 1 and 3, showed a considerable hypso-
chromic shift.
[1] Z. Guo, P.J. Sadler, Angew. Chem., Int. Ed. 38 (1999) 1512.
[2] M.J. Clarke, Coord. Chem. Rev. 232 (2002) 69.
[3] C.X. Zhang, S.J. Lippard, Curr. Opin. Chem. Biol. 7 (2003) 481.
[4] M.J. Clarke, Coord. Chem. Rev. 236 (2003) 209.
[5] Y.K. Yan, M. Melchart, A. Habtemariam, P.J. Sadler, Chem. Commun. (2005)
4764.
[6] P.J. Dyson, G. Sava, J. Chem. Soc., Dalton Trans. (2006) 1929.
[7] M. Coluccia, G. Sava, F. Loseto, A. Nassi, A. Boccarelli, D. Giorgano, E. Alessio, G.
Mestroni, Eur. J. Cancer 29A (1993) 1873.
[8] G. Sava, S. Zorzet, T. Giraldi, G. Mestroni, G. Zassinovich, Eur. J. Cancer Clin.
Oncol. 20 (1984) 841.
Hypochromism and red shift (bathochromism) in electronic
absorption spectra of DNA bound to different compounds are gen-
erally attributed to intercalation, involving a strong stacking inter-
action between aromatic chromophores and the base pairs of DNA
[58]. However, according to previous works [59,60], a decrease in
absorbance (hypochromism) or an increase in absorbance (hyper-
chromicity) upon addition of DNA to a compound in solution is
indicative of an interaction between the complex and herring
sperm DNA in any one of the non-intercalative modes. The intrinsic
binding constant of the complexes fall in the range 1.958 ꢂ 103–
4.985 ꢂ 103 Mꢁ1, which are not comparable with that of classical
intercalators like d-[Ru(phen)2(dppz)]2+ [61] (Kb = 3.2 ꢂ 106;
dppz = dipyrido[3,2-a:20,30-c]-phenazine) and [Ru(bpy)2(ip)]2+
[62] (Kb = 4.7 ꢂ 105; ip = imidazo[4,5-f][1,10]phenanthroline). Yet,
the Kb value of 4.985 ꢂ 103 for complex 3 is close to that of a re-
[9] G. Sava, S. Pacor, S. Zorzet, E. Alessio, G. Mestroni, Pharmacol. Res. 21 (1989)
617.
[10] F. Loseto, E. Alessio, G. Mestroni, G. Lacidogna, A. Naddi, D. Giordano, M.
Coluccia, Anticancer Res. 11 (1991) 1549.
[11] G. Esposito, S. Cauci, F. Fogolari, E. Alessio, S.M. Cocchi, F. Quadrifoglio, P.
Viglino, Biochemistry 31 (1992) 7094.
[12] W.H. Ang, P.J. Dyson, Eur. J. Inorg. Chem. (2006) 4003.
[13] V. Brabec, O. Novakova, Drug Resist. Update 9 (2006) 111.
[14] J. Mola, I. Romero, M. Rodriguez, F. Bozoglian, A. Poater, M. Sola, T. Parella, J.
Benet-Buchholz, X. Fontrodona, A. Llobet, Inorg. Chem. 46 (2007) 10707.
[15] I. Bratsos, B. Serli, E. Zangrando, N. Katsaros, E. Alessio, Inorg. Chem. 46 (2007)
975.
[16] A. Wu, D.C. Kennedy, B.O. Patrick, B.R. James, Inorg. Chem. 42 (2003)
7579.
[17] A. Wu, D.C. Kennedy, B.O. Patrick, B.R. James, Inorg. Chem. Commun. 6 (2003)
996.
[18] V. Mahalingam, N. Chitrapriya, F.R. Fronczek, K. Natarajan, Polyhedron 27
(2008) 1917.
[19] V. Mahalingam, N. Chitrapriya, F.R. Fronczek, K. Natarajan, Polyhedron 27
(2008) 2743.
[20] N. Dodoff, K. Granharov, N. Spassovska, J. Inorg. Biochem. 60 (1995) 257.
[21] Z. Muhi-Eldeen, K. Al-Obaidi, M. Nadir, V.F. Roche, Eur. J. Med. Chem. 27 (1992)
101.
[22] K.K. Narang, V.P. Singh, Synth. React. Inorg. Met. Org. Chem. 23 (1993) 971.
[23] S.K. Agarwal, R. Chandra, R. Gupta, D.R. Tutlani, J. Inst. Chem. 59 (5) (1987)
225.
ported semi-intercalator [Ru(phen)3]2+ [63] (Kb = 5.5 ꢂ 103 Mꢁ1
;
phen = 1,10-phenanthroline). Overall, it can be concluded that
the binding mode of the complexes is either non-intercalative or
semi-intercalative but not intercalative.
3.6. Antibacterial activity
[24] C.N. Haksar, R.C. Malhotra, G. Pandya, R.K. Sethi, Lab. J. Sci. Technol. 9B (1971)
34.
[25] F. Binon, R. Royer, J. Chem. Soc. (1953) 1358.
[26] J. Marmur, J. Mol. Biol. 3 (1961) 208.
Three Gram negative (E. coli, K. pneumoniae, S. sonnei) and two
Gram positive (S. aureus, S. epidermidis) pathogenic bacteria were
chosen to study the antibacterial activity of the complexes. The
data of the inhibition zone of growth (in mm) and minimum inhib-
[27] M.F. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[28] I.P. Evans, A. Spencer, G. Wilkinson, J. Chem. Soc., Dalton Trans. (1973) 204.
[29] Bruker Advanced X-ray Solutions SMART for WNT/2000 (Version 5.628), Bruker
AXS Inc., Madison, WI, USA, 1997–2002.
[30] Bruker Advanced X-ray Solutions SAINT (Version 6.45), Bruker AXS Inc.,
Madison, WI, USA, 1997–2003.
[31] Bruker Advanced X-ray Solutions SADABS in SAINT (Version 6.45), Bruker AXS Inc.,
Madison, WI, USA, 1997–2003.
itory concentration (in
lg/L) are given in Table 7. These results
show that the complexes exhibited better activity than their corre-
sponding hydrazide ligands, although they could not reach the
effectiveness of the standards used in the study.
[32] G.M. Sheldrick, SHELXTL v.6.14, Bruker AXS Inc., Madison, WI, 2003.
[33] NCCLS (National Committee for Clinical Laboratory Standards), Performance
Standards for Antimicrobial Disk Susceptibility Test, sixth ed. Approved
Standard, Wayne Pa., M2-A6, 1997.
4. Conclusions
[34] NCCLS (National Committee for Clinical Laboratory Standards), Performance
Standards for Antimicrobial Susceptibility Testing, Ninenth International
Supplement, Wayne Pa., M100 – S9, 1999.
[35] H. Shindo, Chem. Pharm. Bull. 5 (1957) 472.
[36] L.B. Zinner, D.E. Crotty, T.J. Anderson, M.D. Glick, Inorg. Chem. 18 (7) (1979)
2045.
[37] B. Cardillo, E. Giorgini, E. Maurelli, G. Tosi, Montash. Chem. 123 (1992) 231.
[38] A.P.S. Fontes, W. Guerra, F.C. Machado, M.V. de Almeida, W.A. Alves, A.M. da
Costa Ferreira, A.P. Filho, Trans. Met. Chem. 29 (2004) 382.
[39] M. Calligaris, O. Carugo, Coord. Chem. Rev. 15 (1996) 83.
[40] M.K. Smith, J.A. Gibson, C.G. Young, J.A. Broomhead, P.C. Junk, F.R. Keene, Eur. J.
Inorg. Chem. (2000) 1365.
[41] S. Grguric-Sipka, C.R. Kowol, S.-M. Valiahdi, R. Eichinger, M.A. Jakupec, A.
Roller, S. Shova, V.B. Arion, B.K. Keppler, Eur. J. Inorg. Chem. (2007) 2870.
[42] M. Ashok, V. Ravinder, A.V.V.S. Prasad, Trans. Met. Chem. 32 (2007) 23.
[43] M. Rodriguez, I. Romero, A. Llobet, A. Deronzier, M. Biner, T. Parella, H.
Stoeckli-Evans, Inorg. Chem. 40 (2001) 4150.
A series of new Cl–Ru(II)–DMSO complexes of the general
formula [RuCl2(DMSO)2(hydrazide)] has been synthesized and
all the complexes have been characterized by analytical and
various spectral techniques. Also, the structure of one of the
complexes has been determined by single crystal X-ray diffrac-
tion. These studies reveal that the hydrazide ligands act as neu-
tral bidentate ligands under the experimental conditions. The
redox properties of the complexes have been studied by cyclic
voltammetry. Preliminary DNA-binding studies of the complexes
show that the complexes are capable of interacting with DNA
non-intercalatively. The complexes have also been shown to pos-
sess significant antibacterial activity against selected bacterial
species.
[44] Y. Wang, D.M. Eichhorn, N. Goswami, Q. Zhao, D.P. Rillema, J. Chem.
Crystallogr. 29 (3) (1999) 277.
[45] L. Otero, P. Nobilia, D. Gambino, H. Cerecetto, M. Gonzalez, J.A. Ellena, O.E. Piro,
Inorg. Chim. Acta 344 (2003) 85.
Appendix A. Supplementary data
[46] E. Alessio, Chem. Rev. 104 (2004) 4203.
[47] E. Alessio, G. Mestroni, G. Nardin, W.M. Attia, M. Calligaris, G. Sava, S. Zorzet,
Inorg. Chem. 27 (1998) 4099.
[48] F.C. March, G. Ferguson, Can. J. Chem. 49 (1971) 3590.
[49] J.D. Oliver, D.P. Riley, Inorg. Chem. 23 (1984) 156.
[50] J.S. Jaswal, S.J. Rittig, B.R. James, Can. J. Chem. 68 (1990) 1808.
[51] E. Alessio, G. Balducci, M. Calligaris, G. Costa, W.M. Attia, G. Mestroni, Inorg.
Chem. 30 (1991) 609.
CCDC 663253 contains the supplementary crystallographic data
for 7. These data can be obtained free of charge via http://
bridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.
cam.ac.uk.