Bucher et al.
JOCArticle
fold, whereas the photochemical C2-C6 cyclization could be
ignited after triplet excitation (Scheme 1). On the basis of a
combined LFP and DFT study, it was recently suggested that
the photochemical C2-C6 cyclization evolves from a triplet
allene intermediate (τ = 30 ns) that initiates benzofulvene
formation.6 In contrast, the exact nature of the long-lived
intermediate (τ = 30 μs) was not identified beyond doubt,
although experimental and computational evidence pointed
to a fulvene triplet diradical. As the thermal C2-C6 cycliza-
tion of enyne-allenes has become important over the past
decade due to its striking potential for the synthesis of
complex carbocycles7 and for DNA cleavage,8 a mechanistic
comparison of the thermal and photochemical diradical
cyclization pathways should open further venues for the
synthetic use of enyne-allenes.
SCHEME 1. Thermal and Photochemical Myers-Saito (C2-
C7) and C2-C6 Cyclizations of Enyne-Allenes
used as a kinetic clock13 and as a mechanistic probe14 for
radical and diradical15,16 intermediates. Formation of ring-
opened products via the cyclopropylcarbinyl substrate is
generally accepted as evidence for the formation of a radical
intermediate. Very recently, we have disclosed experimental
evidence for the stepwise mechanism in the thermal C2-C6
cyclization of enyne-allenes using an ultrafast radical
clock.17 Encouraged by this finding, we decided to interro-
gate also the photochemical route using the radical clock as a
mechanistic probe and to complement these studies with
kinetic isotope and laser flash photolysis investigations to
further understand the nature of the long-lived intermediate.
The thermal C2-C6 cyclization of enyne-allenes has been
extensively studied over the past few years, both mechan-
istically9 and computationally.10 Some years back, our
group as well as Lipton et al. investigated the C2-C6
cyclization using radical clock experiments, but all early
attempts to locate cyclopropyl ring-opened products in the
thermal C2-C6 cyclization of enyne-allenes were met with
failure.9a,11 Cyclopropyl12 substrates have been successfully
Results
As part of our study to comprehend the mechanism of the
photochemical C2-C6 cyclization, we have chosen enyne-
allenes 1-3 (Chart 1) as model compounds due to their
special features: (1) the triisopropylsilanyl group (TIPS) at
the alkyne terminus raises the cyclization barrier thus pre-
cluding any thermal reaction during photolysis; (2) the bis-
(4-bromophenyl)amine unit was used as an internal triplet
sensitizer to initiate the photochemical reaction; and (3) the
“radical clock” reporter group was attached to the allene
terminus to trap the radical intermediate.
(6) Bucher, G.; Mahajan, A. A.; Schmittel, M. J. Org. Chem. 2008, 73,
8815–8828.
(7) (a) Zhang, H. R.; Wang, K. K. J. Org. Chem. 1999, 64, 7996–7999.
(b) Wang, K. K.; Zhang, H. R.; Petersen, J. L. J. Org. Chem. 1999, 64, 1650–
1656. (c) Yang, Y. H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68,
5832–5837. (d) Yang, Y. H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003,
68, 8545–8549.
(8) (a) Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron
Lett. 1996, 37, 7691–7694. (b) Schmittel, M.; Maywald, M.; Strittmatter, M.
Synlett 1997, 165–166.
Synthesis. Preparation of enyne-allenes 1-3 is described
elsewhere.17 4 was obtained in a three-step synthesis from
benzaldehyde after addition of BrMgCtC;R, (prepared
from the reaction of EtMgBr with R = 1-ethynyl-2,2-
diphenylcyclopropane18), acetylation of the propargyl alco-
hol with acetic anhydride/DMAP, and concluding with
(9) (a) Schmittel, M.; Strittmatter, M.; Kiau, S. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1843–1845. (b) Schmittel, M.; Strittmatter, M.; Vollmann, K.;
Kiau, S. Tetrahedron Lett. 1996, 37, 999–1002. (c) Schmittel, M.; Steffen, J.
P.; Auer, D.; Maywald, M. Tetrahedron Lett. 1997, 38, 6177–6180.
(d) Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. Chem.;Eur. J.
1997, 3, 807–816. (e) Engels, B.; Lennartz, C.; Hanrath, M.; Schmittel, M.;
Strittmatter, M. Angew. Chem., Int. Ed. 1998, 37, 1960–1963. (f) Schmittel,
M.; Strittmatter, M. Tetrahedron 1998, 54, 13751–13760. (g) Li, H. B.;
Zhang, H. R.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2001, 66, 6662–
6668. (h) Schmittel, M.; Steffen, J. P.; Maywald, M.; Engels, B.; Helten, H.;
Musch, P. J. Chem. Soc., Perkin Trans. 2 2001, 1331–1339. (i) Yang, Y. H.;
Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 5832–5837. (j) Yang, Y.
H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 8545–8549.
(10) (a) Engels, B.; Hanrath, M. J. Am. Chem. Soc. 1998, 120, 6356–6361.
(b) Schreiner, P. R.; Prall, M. J. Am. Chem. Soc. 1999, 121, 8615–8627.
(c) Cramer, C. J.; Kormos, B. L.; Seierstad, M.; Sherer, E. C.; Winget, P. Org.
Lett. 2001, 3, 1881–1884. (d) de Visser, S. P.; Filatov, M.; Shaik, S. Phys.
Chem. Chem. Phys. 2001, 3, 1242–1245. (e) Stahl, F.; Moran, D.; Schleyer, P.
V.; Prall, M.; Schreiner, P. R. J. Org. Chem. 2002, 67, 1453–1461.
(f) Schreiner, P. R.; Navarro-Vazquez, A.; Prall, M. Acc. Chem. Res. 2005,
38, 29–37.
(14) (a) Alonso, M. E.; Hernandez, M. I.; Gomez, M.; Jano, P.; Pekerar,
S. Tetrahedron 1985, 41, 2347–2354. (b) Baldwin, J. E.; Adlington, R. M.;
Domayne-Hayman, B. P.; Knight, G.; Ting, H.-H. J. Chem. Soc., Chem.
Commun. 1987, 1661–1663. (c) Suckling, C. J. Angew. Chem., Int. Ed. Engl.
1988, 27, 537–552. (d) Slama, J. T.; Satsangi, R. K.; Simmons, A.; Lynch, V.;
Bolger, R. E.; Suttie, J. J. Med. Chem. 1990, 33, 824–832. (e) Arasasingham,
R. D.; He, G.-X.; Bruice, T. C. J. Am. Chem. Soc. 1993, 115, 7985–7991.
(f) Dixon, C. E.; Hughes, D. W.; Baines, K. M. J. Am. Chem. Soc. 1998, 120,
11049–11053. (g) Hartshorn, R. M.; Telfer, S. G. J. Chem. Soc., Dalton
Trans. 1999, 3565–3571. (h) Newcomb, M.; Toy, P. H. Acc. Chem. Res. 2000,
33, 449–455. (i) Kretzschmar, I.; Levinson, J. A.; Friend, C. M. J. Am. Chem.
€
(11) Brunette, S. R.; Lipton, M. A. J. Org. Chem. 2000, 65, 5114–5119.
(12) (a) Shimizu, N.; Nishida, S. J. Chem. Soc., Chem. Commun. 1972,
389–390. (b) Rudolph, A.; Weedon, A. C. Can. J. Chem. 1990, 68, 1590–1596.
(c) Newcomb, M.; Johnson, C. C.; Manek, M. B.; Varick, T. R. J. Am. Chem.
Soc. 1992, 114, 10915–10921. (d) Adam, W.; Curci, R.; D’Accolti, L.; Dinoi,
A.; Fusco, C.; Gasparrini, F.; Kluge, R.; Paredes, R.; Schulz, M.; Smerz, A.
Soc. 2000, 122, 12395–12396. (j) Adam, W.; Roschmann, K. J.; Saha-Moller,
C. R.; Seebach, D. J. Am. Chem. Soc. 2002, 124, 5068–5073. (k) Tokuyasu,
T.; Kunikawa, S.; Masuyama, A.; Nojima, M. Org. Lett. 2002, 4, 3595–3598.
(l) Samuel, M. S.; Baines, K. M. J. Am. Chem. Soc. 2003, 125, 12702–12703.
(m) Samuel, M. S.; Jenkins, H. A.; Hughes, D. W.; Baines, K. M. Organo-
metallics 2003, 22, 1603–1611. (n) Flemmig, B.; Kretzschmar, I.; Friend, C.
M.; Hoffmann, R. J. Phys. Chem. A 2004, 108, 2972–2981. (o) Tong, X.;
DiLabio, G. A.; Clarkin, O. J.; Wolkow, R. A. Nano Lett. 2004, 4, 357–360.
(15) (a) Wagner, P. J.; Liu, K.-C.; Noguchi, Y. J. Am. Chem. Soc. 1981,
103, 3837–3841. (b) Cheng, K.-L.; Wagner, P. J. J. Am. Chem. Soc. 1994, 116,
7945–7946. (c) Gan, C. Y.; Lambert, J. N. J. Chem. Soc., Perkin Trans. 1
1998, 2363–2372. (d) Dopico, P. G.; Finn, M. G. Tetrahedron 1999, 55, 29–
62. (e) Broyles, D. A.; Carpenter, B. K. Org. Biomol. Chem. 2005, 3, 1757–
1767.
€
(16) For a theoretical study on radical clock openings see: Jager, C. M;
Hennemann, M.; Mieszala, A.; Clark, T. J. Org. Chem. 2008, 73, 1536–1545.
(17) Schmittel, M.; Mahajan, A. A.; Bucher, G.; Bats, J. W. J. Org. Chem.
2007, 72, 2166–2173.
(18) Bettinetti, G. F.; Desimoni, G.; Gruenanger, P. Gazz. Chim. Ital.
1964, 94, 91–108.
.
K.; Veloza, L. A.; Weinkotz, S.; Winde, R. Chem.;Eur. J. 1997, 3, 105–109.
(13) (a) Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317–323.
(b) Engel, P. S.; Keys, D. E. J. Am. Chem. Soc. 1982, 104, 6860–6861.
(c) Campredon, M.; Kanabus-Kaminska, J. M.; Griller, D. J. Org. Chem.
1988, 53, 5393–5396. (d) Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc.
1988, 110, 1313–1315. (e) Newcomb, M.; Manek, M. B.; Glenn, A. G. J. Am.
Chem. Soc. 1991, 113, 949–958. (f) Adam, W.; Heil, M. J. Am. Chem. Soc.
1991, 113, 1730–1736. (g) Adam, W.; Finzel, R. J. Am. Chem. Soc. 1992, 114,
4563–4568. (h) Newcomb, M. Tetrahedron 1993, 49, 1151–1176. (i) Engel, P.
S.; Wu, A. Y. J. Org. Chem. 1994, 59, 3969–3974. (j) Caldwell, R. A.; Zhou, L.
W. J. Am. Chem. Soc. 1994, 116, 2271–2275. (k) Engel, P. S.; Lowe, K. L.
Tetrahedron Lett. 1994, 35, 2267–2270. (l) Tanko, J. M.; Blackert, J. F. J.
Chem. Soc., Perkin Trans. 2 1996, 1775–1779. (m) Cooksy, A. L.; King, H. F.;
Richardson, W. H. J. Org. Chem. 2003, 68, 9441–9452.
e
J. Org. Chem. Vol. 74, No. 16, 2009 5851