pubs.acs.org/joc
Use of Potassium β-Trifluoroborato Amides in Suzuki-Miyaura
Cross-Coupling Reactions
ꢀ
Gary A. Molander* and Ludivine Jean-Gerard
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6323
Received May 8, 2009
Potassium β-trifluoroborato amides were prepared and used as successful partners in Suzuki-
Miyaura reactions with various aryl chlorides, including electron-rich and electron-poor derivatives,
as well as several heteroaryl chloride partners.
Introduction
certainly the transition-metal-catalyzed addition of diboron
reagents to R,β-unsaturated carbonyl compounds. This pro-
cedure employs platinum,4 rhodium,5 nickel,6 or copper
catalysts7 and permits the boration of a variety of R,β-
unsaturated esters, nitriles, ketones, and amides. However,
the engagement of the organoboron reagents thus formed
has not been studied as extensively as their zinc8 or titanium9
counterparts.
Even though the metal-catalyzed cross-coupling reaction
is by far the most important and widely used application of
organoborons,1,10 surprisingly, the first use of β-borato
esters in Suzuki-Miyaura reactions was reported only in
2006 by Snieckus et al.11 Our group recently described the
preparation of β-trifluoroborato esters and ketones and their
Organoborons are valuable synthetic intermediates for the
preparation of a wide variety of organic molecules owing to
their functional group tolerance and low toxicity.1 β-Boryl
carbonyl compounds,2 which possess an anion equivalent β
to a carbonyl group, constitute an important subclass of
organoboron reagents. These synthons exhibit a charge-
inverted reactivity compared to more traditional synthons,
thus allowing potentially valuable, strategic C-C bond
connections (Scheme 1). This is illustrated in Scheme 1,
wherein the well-known Michael addition of nucleophiles
to R,β-unsaturated carbonyl compounds3 takes advantage of
the electrophilic character of the β carbon in R,β-unsaturated
carbonyl substrates. In contrast, the corresponding carbon
in β-boryl carbonyl derivatives bears a partial negative
charge, acting as a nucleophile during the C-C bond-form-
ing event.
(5) Kabalka, G. W.; Das, B. C.; Das, S. Tetrahedron Lett. 2002, 43, 2323.
(6) Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5031.
(7) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett.
2000, 41, 6821. (b) Takayashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet.
Chem. 2001, 625, 47. (c) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887.
(d) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
Many studies have been devoted to the preparation of
β-boryl carbonyl substrates, and the most important route is
(8) (a) Tamaru, Y.; Ochia, H.; Nakamura, T.; Yoshida, Z. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 1157. (b) Nakamura, E.; Kuwajima, I. J. Am. Chem.
Soc. 1984, 106, 3368. (c) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Tsubaki, K.;
Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559. (d) Nakamura, E.; Aoki, S.;
Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056. (e)
Ochiai, H.; Nishihara, T.; Tamaru, Y.; Yoshida, Z. J. Org. Chem. 1988, 53,
1343. (f) McWilliams, J. C.; Armstrong, J. D. III; Zheng, N.; Bhupathy, M.;
Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1996, 118, 11970. (g) Rilatt, I.;
Caggiano, L.; Jackson, R. F. W. Synlett 2005, 18, 2701.
(1) (a) Zaidlewicz, M.; Brown, H. C. Organic Syntheses via Boranes;
Aldrich Chemical Co.: Milwaukee, 2002. (b) Miyaura, N.; Suzuki, A. Chem. Rev.
1995, 95, 2457. (c) Kaufmann, D. E.; Matteson, D. S. Science of Synthesis:
Boron Compounds; Thieme: Stuttgart, 2004; Vol. 6.
(2) (a) Matteson, D. S.; Cheng, T.-C. J. Org. Chem. 1968, 33, 3055. (b)
Matteson, D. S.; Beedle, D. S. Tetrahedron Lett. 1987, 28, 4499. (c) Whiting,
A. Tetrahedron Lett. 1991, 32, 1503. (d) Curtis, A. D. M.; Whiting, A.
Tetrahedron Lett. 1993, 49, 187.
(3) Zou, G.; Guo, J.; Wang, Z.; Huang, W.; Tang, J. Dalton Trans. 2007,
3055.
(9) (a) Goswami, R. J. Org. Chem. 1985, 50, 5907. (b) Nakamura, E.;
Kuwajima, I. J. Am. Chem. Soc. 1983, 105, 652. (c) Martins, E.; Gleason, J.
Org. Lett. 1999, 1, 1643. (d) Ochiai, H.; Nishihara, T.; Tamaru, Y.; Yoshida,
Z. J. Org. Chem. 1988, 53, 1343.
(10) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
(11) Scherer, S.; Meudt, A.; Nerdinger, S.; Lehnemann, B.; Jagusch, T.;
Snieckus, V. WO 2006/097221, 2006.
(4) (a) Lawson, Y. G.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.;
Rice, C. R. Chem. Commun. 1997, 2051. (b) Ali, H. A.; Goldberg, I.; Srebnik,
M. Organometallics 2001, 20, 3962. (c) Bell, N. J.; Cox, A. J.; Cameron, N. R.;
Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier, C. J.; Baucherel, X.;
Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 1854.
5446 J. Org. Chem. 2009, 74, 5446–5450
Published on Web 07/02/2009
DOI: 10.1021/jo900968h
r
2009 American Chemical Society