Communication
Organic & Biomolecular Chemistry
10 L. Mçhlmann, M. Baar, J. Rieß, M. Antonietti, X. Wang and
Acknowledgements
S. Blechert, Adv. Synth. Catal., 2012, 354, 1909.
This work was financially supported by the Ministry of 11 A. G. Condie, J. C. GonzalezGome and C. R. J. Stephenson,
Education, Science and Technological Development of the J. Am. Chem. Soc., 2010, 132, 1464.
Republic of Serbia (Grant No. 451-03-9/2021-14/200026). We 12 Z. Xie, C. Wang, K. E. deKrafft and W. Lin, J. Am. Chem.
are also thankful for financial support from the Proof of Soc., 2011, 133, 2056.
Concept project of Innovation Fund of Republic of Serbia no. 13 (a) D. B. Freeman, L. Furst, A. G. Condie and
5183. We wish to thank Dr Miloš Vorkapić for help with the 3D
printing of ABS filaments and Dr Milče Smiljanić and Milena
Rašljić Rafajilović for help in the fabrication of the silicon/
glass microreactor.
C. R. J. Stephenson, Org. Lett., 2012, 14, 94; (b) I. Perepichka,
S. Kundu, Z. Hearne and C.-J. Li, Org. Biomol. Chem., 2015,
13, 447.
14 M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and
D. C. Fabry, Chem. Commun., 2011, 47, 2360.
15 M. Rueping, S. Zhu and R. M. Koenigs, Chem. Commun.,
2011, 47, 12709.
16 M. Rueping, S. Zhu and R. M. Koenigs, Chem. Commun.,
2011, 47, 8679.
Notes and references
1 (a) A. W. Kahsai, J. Cui, H. U. Kaniskan, P. P. Garner and
G. Fenteany, J. Biol. Chem., 2008, 283, 24534; (b) S. Kumar, 17 (a) I. Ibrahem, J. S. M. Samec, J. E. Bckvall and A. Crdova,
V. K. Eyunni, M. Gangapuram and K. K. Redda, Lett. Drug
Des. Discovery, 2014, 11, 428; (c) M. R. Bennett,
M. L. Thompson, S. A. Shepherd, M. S. Dunstan,
Tetrahedron Lett., 2005, 46, 3965; (b) Q. Yang, L. Zhang,
C. Ye, S. Luo, L.-Z. Wu and C.-H. Tung, Angew. Chem., Int.
Ed., 2017, 56, 3694.
A. J. Herbert, D. R. M. Smith, V. A. Cronin, B. R. K. Menon, 18 H. Hou, S. Zhu, I. Atodiresei and M. Rueping, Eur. J. Org.
C. Levy and J. Micklefield, Angew. Chem., Int. Ed., 2018, 57,
Chem., 2018, 1277.
10600; (d) Tetrahydroisoquinolines in therapeutics:
patent review (2010–2015), Inder Pal Singh & Purvi Shah.
a
19 For selected reviews on organic synthesis conducted in
flow, see: (a) G. Jas and A. Kirschning, Chem. – Eur. J.,
2003, 9, 5708; (b) K. Geyer, J. D. C. Codee and
P. H. Seeberger, Chem. – Eur. J., 2006, 12, 8434; (c) P. Watts
and C. Wiles, Chem. Commun., 2007, 443; (d) J. Yoshida,
A. Nagaki and T. Yamada, Chem. – Eur. J., 2008, 14, 7450;
(e) C. Wiles and P. Watts, Eur. J. Org. Chem., 2008, 1655;
(f) D. Webb and T. F. Jamison, Chem. Sci., 2010, 1, 675;
(g) Visible light catalysis in Organic synthesis, ed. C. R. J.
Stephenson, T. P. Yoon and D. W. C. MacMillan, Wiley-
VCH Weinheim, Germany.
2 For selected reviews on CDC reactions, see:
(a) S.-I. Murahashi and D. Zhang, Chem. Soc. Rev., 2008, 37,
1490; (b) C. J. Scheuermann, Chem. – Asian J., 2010, 5, 436;
(c) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew.
Chem., Int. Ed., 2011, 50, 11062; (d) C. Liu, H. Zhang,
W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780;
(e) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111,
1215; (f) S. A. Girard, T. Knauber and C.-J. Li, Angew.
Chem., Int. Ed., 2014, 53, 74.
3 (a) B. Schweitzer-Chaput and M. Klussmann, Eur. J. Org. 20 For selected examples of visible light promoted photochemi-
Chem., 2013, 666; (b) H. Ueda, K. Yoshida and
H. Tokuyama, Org. Lett., 2014, 16, 4194; (c) T. Nobuta,
N. Tada, A. Fujiya, A. Kariya, T. Miura and A. Itoh, Org.
Lett., 2013, 15, 574; (d) A. Sud, D. Sureshkumar and
M. Klussmann, Chem. Commun., 2009, 3169; (e) O. Basle
and C.-J. Li, Org. Lett., 2008, 10, 3661; (f) H. Richter and
O. G. Mancheño, Eur. J. Org. Chem., 2010, 4460.
4 (a) J. W. Tucker and C. R. J. Stephenson, J. Org. Chem.,
2012, 77, 1617; (b) C. K. Prier, D. A. Rankic and
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(c) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2,
527; (d) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012,
51, 6828; (e) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini,
Chem. Rev., 2007, 107, 2725; (f) N. A. Romero and
D. A. Nicewicz, Chem. Rev., 2016, 116, 10075.
cal transformations conducted in flow, see: (a) Accelerating
Visible-Light Photoredox Catalysis in Continuous-Flow Reactors,
N. J. W. Straathof, T. Noel in Visible light catalysis in Organic
synthesis, ed. C. R. J. Stephenson, T. P. Yoon and D. W. C.
MacMillan, Wiley-VCH Weinheim, Germany, 2018, pp.
389–444; (b) T. Fukuyama, Y. Kajihara, Y. Hino and I. Ryu,
J. Flow Chem., 2011, 1, 40; (c) F. Levesque and P. H. Seeberger,
Org. Lett., 2011, 13, 5008; A. C. Gutierrez and T. F. Jamison,
Org. Lett., 2011, 13, 6414; (d) J. M. R. Narayanam and
C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102;
(e) J. W. Beatty and C. R. J. Stephenson, J. Am. Chem. Soc.,
2014, 136, 10270; (f) Y. Su, N. J. W. Straathof, V. Hessel and
T. Noel, Chem. – Eur. J., 2014, 20, 10562; (g) E. M. Schuster
and P. Wipf, Isr. J. Chem., 2014, 54, 361.
21 J. W. Tucker, Y. Zhang, T. F. Jamison and
C. R. J. Stephenson, Angew. Chem., Int. Ed., 2012, 51, 4144.
5 D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77.
6 M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. 22 M. Neumann and K. Zeitler, Org. Lett., 2012, 14, 2658.
Chem. Soc., 2008, 130, 12886.
7 J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson,
J. Am. Chem. Soc., 2009, 131, 8756.
8 L. Ren and H. Cong, Org. Lett., 2018, 20, 3225.
9 D. P. Hari and B. Konig, Org. Lett., 2011, 13, 3852.
23 Z. Džambaski and B. P. Bondžić, Org. Biomol. Chem., 2019,
17, 6420.
24 During the DDQ oxidation procedure, 1 equivalent of
DDQH2 is produced, which precipitates during the reac-
tion, causing reactor clogging.
2674 | Org. Biomol. Chem., 2021, 19, 2668–2675
This journal is © The Royal Society of Chemistry 2021