10.1002/anie.202014310
Angewandte Chemie International Edition
RESEARCH ARTICLE
Applications in Organic Synthesis, Medicine and Materials, 2nd ed., D. G.
Hall (ed.), Wiley-VCH, Weinheim, 2011, p. 171-212; c) T. Ishiyama, N.
Miyaura, Chem. Rec. 2004, 3, 271–280; d) J. Carreras, A. Caballero, P.
J. Pérez, Chem. Asian J. 2019, 14, 329-343; e) H. Yoshida, ACS Catal
2016, 6, 1799-1811. f) J. Takaya, N. Iwasawa, ACS Catal. 2012, 2,
1993−2006; g) T. B. Marder, N. C. Norman, Top. Catal. 1998, 5, 63–73;
h) H. Yoshida, ACS Catal. 2016, 6, 1799–1811; i) E. C. Neeve, S. J.
Geier, I. A. I. Mkhalid, S. A. Westcoot, T. B. Marder, Chem. Rev. 2016,
116, 9091–9161; j) K. Semba, T. Fujihara, J. Terao, Y. Tsuji, Tetrahedron
2015, 71, 2183–2197. For some original (recent) contributions: k) N.
Miralles, R. Alam, K. J. Szabó, E. Fernández, Angew. Chem. Int. Ed.
2016, 55, 4303 –4307; l) B. Trost, G. Zhang, J. Am. Chem. Soc. 2020,
142, 7312-7316; m) T. Miura, J. Nakahashi, T. Sasatsu, M. Murakami,
Angew. Chem. Int. Ed. 2019, 58, 1138-1142; n) Y. Hu, W. Sun, T. Zhang,
N. Xu, J. Xu, Y. Lan, C. Liu, Angew. Chem. Int. Ed. 2019, 58, 15813-
15818.
alkyne is supported by the isolation of compounds 40a and 40b
(Scheme 5a), as -borylation would not allow for these envisioned
consecutive steps to take place. An excess (2.5 equiv) of B2pin2
in the proposed manifold agrees well with the experimental
observation of a mixture of compounds when a virtually
stoichiometric amount was present (Scheme 5b). Under these
conditions, the concomitant formation of mono-borylated allenol
41 is noted being a likely precursor to the 1,2-diborylated 1,3-
diene product. The whole process involves two CO bond
scission steps, with the second one leading to an (E)-configured
diborylated alkene under steric control.
In the case of B2neop2 (upper part of Scheme 6), the reaction
takes a different course though the first addition step (E) is
reminiscent to the one (A) based on B2pin2. Upon -oxygen
elimination, a borylated allene carbonate copper species F is
formed that, with the assistance of i-PrOH,[4,18] can undergo a
directing group controlled intramolecular transmetalation (G).[19]
The so-formed copper allene borocarbonate intermediate G
would produce the final -hydroxy allene via a protonation
process while releasing CO2 and neopBOi-Pr, and regenerating
LCu(Oi-Pr) for subsequent turnover. The competition experiment
using a 1:1 molar ratio of both B2pin2 and B2neop2 (Scheme 5c)
and the deuterium labeling experiment (Scheme 5d) are in line
with this scenario, and the apparent easier activation of the
CBneop bond by the Cu complex will lead preferentially to the -
hydroxyallene product.
[3]
[4]
H. Ito, Y. Sasaki, M. Sawamura, J. Am. Chem. Soc. 2008, 130, 15774–
15775.
a) C. Jarava-Barrera, A. Parra, L. Amenjs, A. Arroyo, M. Tortosa, Chem.
Eur. J. 2017, 23, 17478–17481. For related chemistry involving allylic
precursors: b) L. Amenós, L. Trulli, L. Nóvoa, A. Parra, M. Tortosa,
Angew. Chem. Int. Ed. 2019, 58, 3188-3192; c) L. Amenꢀs, L. Nꢀvoa, L.
Trulli, A. Arroyo-Bondía, A. Parra, M. Tortosa, ACS Catal. 2019, 9,
6583−6587.
[5]
[6]
[7]
C. Deutsch, B. H. Lipshutz, N. Krause, Angew. Chem. Int. Ed. 2007, 46,
1650-1653.
C. Zhong, Y. Sasaki, H. Ito, M. Sawamura, Chem. Commun. 2009, 5850–
5852.
For selected recent examples: a) K. Liu, I. Khan, J. Cheng, Y. J. Hsueh,
Y. J. Zhang, ACS Catal. 2018, 8, 11600−11604; b) A. Cai, W. Guo, L.
Martínez-Rodríguez, A. W. Kleij, J. Am. Chem. Soc. 2016, 138, 14194-
14197; c) C. Zhao, B. H. Shah, I. Khan, Y. Kan, Y. J. Zhang, Org. Lett.
2019, 21, 9045−9049; d) W. Guo, L. Martínez-Rodríguez, R. Kuniyil, E.
Martin, E. C. Escudero-Adán, F. Maseras, A. W. Kleij, J. Am. Chem. Soc.
2016, 138, 11970-11978; e) N. Miralles, J. E. Gómez, A. W. Kleij, E.
Fernández, Org. Lett. 2017, 19, 6096-6099; f) W. Guo, R. Kuniyil, J. E.
Gómez, F. Maseras, A. W. Kleij, J. Am. Chem. Soc. 2018, 140, 3981-
3987; For reviews: g) W. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W.
Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735-13747; h) R. Gava, E.
Fernández, Org. Biomol. Chem. 2019, 17, 6317–6325.
In summary, we have discovered a new dichotomic behavior
of diboron(4) reagents in the Cu-mediated catalytic conversion of
alkynyl cyclic carbonates. This new process significantly
expedites the synthesis of useful 1,2-diborylated 1,3-dienes, and
- and -hydroxy allenes using a mild and simple catalytic
approach. Virtually the same catalytic protocol allows for the
stereoselective conversion of -hydroxyallenes into 2-borylated
1,3-dienes, making the developed catalyst thus a privileged
system for the preparation of wide range of synthetically valuable
synthons.
[8]
a) J. E. Gómez, A. Cristofol, A. W. Kleij, Angew. Chem. Int. Ed. 2019, 58 ,
3903-3907; b) L. Tian, L. Gong, X. Zhang, Adv. Synth. Catal. 2018, 360,
2055-2059; c) X. Tang, S. Woodward, N. Krause, Eur. J. Org. Chem.
2009, 2836-2844; d) Y.-C. Zhang, B.-W. Zhang, R.-L. Geng, J. Song,
Org. Lett. 2018, 20, 7907-7911; e) Z.-J. Zhang, L. Zhang, R.-L. Geng, J.
Song, X.-H. Chen, L.-Z. Gong, Angew. Chem. Int. Ed. 2019, 58, 12190-
12194; for the conversion of allylic lactone surrogates: f) J. E. Gómez, W.
Guo, S. Gaspa, A. W. Kleij, Angew. Chem. Int. Ed. 2017, 56, 15035-
15038.
Acknowledgements
We thank the Cerca program/Generalitat de Catalunya, ICREA,
MINECO (CTQ2017-88920-P) and AGAUR (2017-SGR-232) for
support. KG thanks the Chinese Research Council for a
predoctoral fellowship (CSC-2017-06920025). Dr. Xisco
Caldentey is thanked for assistance with the HTE screening
phase and Dr. Eduardo Escudero-Adán for the X-ray
crystallographic studies.
[9]
K. Guo, A. W. Kleij, Org. Lett. 2020, 22, 3942-3945.
[10] a) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994-2009; b) S. N.
Kessler, F. Hundemer, J.-E. Bꢁckvall, ACS Catal. 2016, 6, 7448-7451; c)
J. Ye, W. Fan, S. Ma, Chem. Eur. J. 2013, 19, 716-720; d) Y. Jiang, A.
B. Diagne, R. J. Thomson, S. E. Schaus, J. Am. Chem. Soc. 2017, 139,
1998-2005; e) N. Morita, N. Krause, Org. Lett. 2004, 6, 4121–4123; f) S.
Li, B. Miao, W. Yuan, S. Ma, Org. Lett. 2013, 15, 977-979; For related -
thioallenes: g) N. Morita, N. Krause, Angew. Chem. Int. Ed. 2006, 45,
1897-1899.
Keywords: alkyne carbonates • borylation • copper • dichotomy
• homogeneous catalysis
[11] Some of these diborylated products were reported before by Szabó and
[1]
a) M. Burns, S. Essafi, J. R. Bame, S. P. Bull, M. P. Webster, S. Balieu,
J. W. Dale, C. P. Butts, J. N. Harvey, V. K. Aggarwal, Nature 2014, 513,
183-188; b) C. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2–14;
c) S. Balieu, G. E. Hallett, M. Burns, T. Bootwicha, J. Studley, V. K.
Aggarwal, J. Am. Chem. Soc. 2017, 137, 4398–4403; d). F. Meng, K. P.
McGrath, A. H. Hoveyda, Nature 2014, 513, 367-374; e) S. Zhang, J. del
Pozo, F. Romiti, Y. Mu, S. Torker, A. H. Hoveyda, Science 2019, 364,
45-51; f) Takahashi, K. Nogi, T. Sasamori, H. Yorimitsu, Org. Lett. 2019,
21, 4739-4744; g) J. W. B. Fyfe, A. J. B. Watson, Chem 2017, 3, 31-55.
a) N. Miyaura, Akira Suzuki, Chem. Rev. 1995, 95, 2457-2483; b)
Suginome, M. and Ohmura, T. in: Boronic Acids: Preparation and
coworkers using either
a dual catalytic (Pd, Cu) or Cu-mediated
(CuCl/PCy3) protocol, see: a) T. S. N. Zhao, Y. Yang, T. Lessing, K. J.
Szabꢀ, J. Am. Chem. Soc. 2014, 136, 7563−7566. The isolated products
had, however, substantially lower E/Z ratios even in the presence of 50
mol % CuCl as previously reported (cf., 1-12) and thus our results show
the importance of both the nature of the supporting ligand and propargylic
surrogate in this diborylation manifold. See also: b) T. S. N. Zhao, J. Zhao,
K. J. Szabꢀ, Org. Lett. 2015, 17, 2290−2293. See also ref. 3.
[12] For more details see CCDC-2035473 and 2035474.
[2]
5
This article is protected by copyright. All rights reserved.