and S. Nakajyo, J. Pharmacol. Sci., 2005, 98, 275; (f) Y. Mikami,
K. Yokoyama, H. Tabeta, K. Nakagaki and T. Arai, J. Pharm.
Dyn., 1981, 4, 282; (g) C. Marchand, S. Antony, K. W. Kohn,
M. Cushman, A. Ioanoviciu, B. L. Staker, A. B. Burgin, L. Stewart
and Y. Pommier, Mol. Cancer Ther., 2006, 5, 287; (h) G. R. Pettit,
V. Gaddamidi, D. L. Herald, S. B. Singh, G. M. Cragg,
J. M. Schmidt, F. E. Boettner, M. Williams and Y. Sagawa,
J. Nat. Prod., 1986, 49, 995.
2 (a) Q. Ding and J. Wu, Org. Lett., 2007, 9, 4959; (b) K. Gao and
J. Wu, J. Org. Chem., 2007, 72, 8611; (c) Q. Ding, Y. Ye, R. Fan and
J. Wu, J. Org. Chem., 2007, 72, 5439; (d) W. Sun, Q. Ding, X. Sun,
R. Fan and J. Wu, J. Comb. Chem., 2007, 9, 690; (e) Y. Ye, Q. Ding
and J. Wu, Tetrahedron, 2008, 64, 1378; (f) Q. Ding, X. Yu and
J. Wu, Tetrahedron Lett., 2008, 49, 2752; (g) Q. Ding, B. Wang and
J. Wu, Tetrahedron, 2007, 63, 12166; (h) Q. Ding, Z. Wang and
J. Wu, J. Org. Chem., 2009, 74, 921.
3 (a) S. Obika, H. Kono, Y. Yasui, R. Yanada and Y. Takemoto,
J. Org. Chem., 2007, 72, 4462 and references therein; (b) N. Asao,
S. Yudha, T. Nogami and Y. Yamamoto, Angew. Chem., Int. Ed.,
2005, 44, 5526; (c) R. Yanada, S. Obika, H. Kono and Y. Takemoto,
Angew. Chem., Int. Ed., 2006, 45, 3822; (d) N. Asao, K. Iso and
S. Yudha, Org. Lett., 2006, 8, 4149; (e) S. Mori, M. Uerdingen,
N. Krause and K. Morokuma, Angew. Chem., Int. Ed., 2005, 44,
4715; (f) N. Asao, C. S. Chan, K. Takahashi and Y. Yamamoto,
Tetrahedron, 2005, 61, 11322; (g) M. Ohtaka, H. Nakamura and
Y. Yamamoto, Tetrahedron Lett., 2004, 45, 7339; (h) B. Witulski,
C. Alayrac and L. Tevzadze-Saeftel, Angew. Chem., Int. Ed., 2003,
42, 4257; (i) I. Yavari, M. Ghazanfarpour-Darjani, M. Sabbaghan
and Z. Hossaini, Tetrahedron Lett., 2007, 48, 3749; (j) A. Shaabani,
E. Soleimani and H. R. Khavasi, Tetrahedron Lett., 2007, 48, 4743;
(k) G.-W. Wang and J.-X. Li, Org. Biomol. Chem., 2006, 4, 4063;
(l) J. L. Diaz, M. Miguel and R. Lavilla, J. Org. Chem., 2004, 69,
3550.
4 (a) Q. Huang and R. C. Larock, J. Org. Chem., 2003, 68, 980;
(b) G. Dai and R. C. Larock, J. Org. Chem., 2003, 68, 920;
(c) G. Dai and R. C. Larock, J. Org. Chem., 2002, 67, 7042;
(d) Q. Huang, J. A. Hunter and R. C. Larock, J. Org. Chem.,
2002, 67, 3437; (e) K. R. Roesch and R. C. Larock, J. Org. Chem.,
2002, 67, 86; (f) K. R. Roesch, H. Zhang and R. C. Larock, J. Org.
Chem., 2001, 66, 8042; (g) K. R. Roesch and R. C. Larock, Org.
Lett., 1999, 1, 553.
5 For reviews, see: J. Montgomery, Angew. Chem., Int. Ed., 2004, 43,
3890; E. Negishi, C. Coperet, S. Ma, S. Y. Liou and F. Liu, Chem.
Rev., 1996, 96, 365; L. F. Tietze, Chem. Rev., 1996, 96, 115; R. Grigg
and V. Sridharan, J. Organomet. Chem., 1999, 576, 65; T. Miura and
M. Murakami, Chem. Commun., 2007, 217. For recent examples,
see: K. Agapiou, D. F. Cauble and M. J. Krische, J. Am. Chem.
Soc., 2004, 126, 4528; K. Subburaj and J. Montgomery, J. Am.
Chem. Soc., 2003, 125, 11210; H.-C. Guo and J.-A. Ma, Angew.
Chem., Int. Ed., 2006, 45, 354.
6 For selected examples, see: (a) S. E. Denmark and A. Thorarensen,
Chem. Rev., 1996, 96, 137; (b) J. A. Porco Jr., F. J. Schoenen,
T. J. Stout, J. Clardy and S. L. Schreiber, J. Am. Chem. Soc., 1990,
112, 7410; (c) G. A. Molander and C. R. Harris, J. Am. Chem. Soc.,
1996, 118, 4059; (d) C. Chen, M. E. Layton, S. M. Sheehan and
M. D. Shair, J. Am. Chem. Soc., 2000, 122, 7424; (e) F. Shi, X. Li,
Y. Xia, L. Zhang and Z.-Y. Yu, J. Am. Chem. Soc., 2007, 129,
15503; (f) S. W. Youn, J.-Y. Song and D. I. Jung, J. Org. Chem.,
2008, 73, 5658; (g) K.-G. Ji, X.-Z. Shu, J. Chen, S.-C. Zhao,
Z.-J. Zheng, L. Lu, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2008,
10, 3919.
Fig. 1 X-Ray ORTEP illustration of fused 1,2-dihydroisoquinoline
3d (30% probability ellipsoids).
1,2-dihydroisoquinoline 3h could be isolated in 64% yield
(Table 1, entry 8). The conditions have also proven to
be useful for other N0-(2-alkynylbenzylidene)hydrazide
substrates. As expected, the substrates 1e–1i are suitable
partners in this process and the desired 1,2-dihydroisoquino-
lines were generated in good yields (Table 1, entries 11–16).
In conclusion, we have described an efficient tandem
reaction of N0-(2-alkynylbenzylidene)hydrazide with alkynes
catalyzed by silver triflate, which generated the highly
functionalized fused 1,2-dihydroisoquinolines in good to
excellent yields. Small library construction as well as biological
screening of these small molecules is ongoing, and the results
will be reported in due course.
Financial support from National Natural Science
Foundation of China (20772018), Shanghai Pujiang Program,
and Program for New Century Excellent Talents in University
(NCET-07-0208) is gratefully acknowledged.
Notes and references
z Crystal data and structure refinement for compound 3d. Empirical
formula: C21H20N2, Mr = 300, monoclinic, space group Pca21, a =
11.8040(2), b = 13.1961(3), c = 23.5991(4) A, V = 3675.96(12) A3,
Z = 8, Dc = 1.239 Mg mꢁ3, T = 296(2) K, Reflections collected/
unique: 19108/10218 (Rint = 0.0251), Final R indices [I 4 2s(I)]:
R1 = 0.0911, wR2 = 0.2659; R indices (all data): R1 = 0.1410,
wR2 = 0.3158.
1 For selected examples, see: (a) K. W. Bentley, The Isoquinoline
Alkaloids, Harwood Academic, Australia, 1998, vol. 1;
(b) B. W. Trotter, K. K. Nanda, N. R. Kett, C. P. Regan,
J. J. Lynch, G. L. Stump, L. Kiss, J. Wang, R. H. Spencer,
S. A. Kane, R. B. White, R. Zhang, K. D. Anderson,
N. J. Liverton, C. J. McIntyre, D. C. Beshore, G. D. Hartman
and C. J. Dinsmore, J. Med. Chem., 2006, 49, 6954; (c) P. Ramesh,
N. S. Reddy and Y. Venkateswarlu, J. Nat. Prod., 1999, 62, 780;
(d) S. Oi, K. Ikedou, K. Takeuchi, M. Ogino, Y. Banno, H. Tawada
and T. Yamane, PCT Int. Appl, 2002, pp. 600 (WO 2002062764 A1);
(e) T. Kaneda, Y. Takeuchi, H. Matsui, K. Shimizu, N. Urakawa
7 Q. Ding, Z. Chen, X. Yu, Y. Peng and J. Wu, Tetrahedron Lett.,
2009, 50, 340.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3469–3471 | 3471