3844
S.-L. Niu et al. / Tetrahedron Letters 50 (2009) 3840–3844
Table 1
References and notes
Optical properties of selected compounds at rta
1. Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev.
2000, 100, 1973–2012.
Compds
kabs
(nm)
emax
kem
(nm)
sem
(ns)
UF
(%)
kr
knr
(Mꢁ1 cmꢁ1
)
(108 sꢁ1
)
(106 sꢁ1
)
2. Ziessel, R.; Ulrich, G.; Harriman, A. New J. Chem. 2007, 31, 496–501.
3. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932.
4. (a) Ziessel, R. Compt. Rendus Acad. Sci. Chim. 2007, 10, 622–629; (b) Ulrich, G.;
Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008, 47, 1184–1201.
5. Haughland, R. P. Handbook of Fluorescent Probes and Research Products, 9th ed.;
Molecular Probes: Eugene, OR, 2002.
6. Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474–14475.
7. Harriman, A.; Izzet, G.; Ziessel, R. J. Am. Chem. Soc. 2006, 128, 10868–10875.
8. Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev, A.
I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. 2005, 127, 13522–13529.
9. Lopez-Arbeloa, F.; Banuelos Prieto, J.; Martinez Martinez, V.; Arbeloa Lopez, T.;
Lopez Arbeloa, I. Chem. Phys. Chem. 2004, 5, 1762–1771.
10. Sartin, M. M.; Camerel, F.; Ziessel, R.; Bard, A. J. J. Phys. Chem. C 2008, 112,
10833–10841.
11. Lai, R. Y.; Bard, A. J. J. Phys. Chem. B 2003, 107, 5036–5042; Hepp, A.; Ulrich, G.;
Schmechel, R.; von Seggern, H.; Ziessel, R. Synth. Metals 2004, 146, 11–15.
12. Ulrich, G.; Ziessel, R. J. Org. Chem. 2004, 69, 2070.
5 (EtOH)
524
527
527
523
523
523
522
523
501
496
643
359
54,100
65,000
92,600
67,000
48,000
71,500
103,000
54,000
77,600
75,500
47,000
30,600
537
542
541
548
548
548
534
534
512
511
660
358/
405
387/
407
529
528
4.3
5.1
5.5
4.5
3.9
5.1
6.9
6.4
2.55
3.18
4.66
11.6
66
48
64
78
79
74
50
82
43
20
60
32
1.53
0.94
1.16
1.73
2.04
1.47
0.72
1.61
1.68
0.63
1.29
0.28
79
102
65
49
54
49
72
35
6 (CH2Cl2)
7 (CH2Cl2)
8 (CH2Cl2)
9 (CH2Cl2)
10 (CH2Cl2)
11 (CH2Cl2)
12 (CH2Cl2)
15 (EtOH)
15 (H2O)
223
252
86
16 (EtOH)
18 (H2O)
59
18 (DMSO)
365
39,000
17.4
38
0.22
36
13. Bonardi, L.; Ulrich, G.; Ziessel, R. Org. Lett. 2008, 10, 2183–2186.
14. Ziessel, R.; Ulrich, G.; Harriman, A.; Alamiry, M. A. H.; Stewart, B.; Retailleau, P.
Chem. Eur. J. 2009, 15, 1359–1369.
15. Goze, C.; Ulrich, G.; Ziessel, R. J. Org. Chem. 2007, 72, 313–322; Goze, C.; Ulrich,
G.; Ziessel, R. Org. Lett. 2006, 8, 4445–4448; Ziessel, R.; Goze, C.; Ulrich, G.
Synthesis 2007, 936–949.
21 (DMSO)
23 (H2O)
506
510
44,700
63,300
7.2
9.2
80
81
1.11
0.88
28
21
a
Quantum yields determined in dilute solution (c ꢃ 1.10–6 M) using Rhodamine
6G as reference (UF = 0.78 in water, kexc = 488 nm) or quinine sulfate (UF = 0.55 in
1 M H2SO4, kexc = 366 nm).27 All UF are corrected for changes in refractive index. kr
16. Harriman, A.; Ziessel, R. In Carbon-Rich Compounds; Haley, M. M., Tykwinski, R.
R., Eds.; Wiley-VCH: Weiheim, 2006; pp 26–89. and references cited therein.
17. Boyer, J. H.; Haag, A. M.; Sathyamoorthi, G.; Soong, M. L.; Thangaraj, K.
Heteroatom Chem. 1993, 4, 39–49.
and knr were calculated using the following equations: kr = UF
assuming that the emitting state is produced with unit quantum efficiency.
/
s
F, knr = (1 ꢁ UF)/sF
,
18. Thivierge, C.; Bandichhor, R.; Burgess, K. Org. Lett. 2007, 9, 2135–2138.
19. Li, L.; Han, J.; Nguyen, B.; Burgess, K. J. Org. Chem. 2008, 73, 1963–1970.
20. Li, L.; Nguyen, B.; Burgess, K. Bioorg. Med. Chem. Lett. 2008, 18, 3112–3116.
21. Roberts, J. C.; Gao, H.; Gopalsamy, A.; Kongsjahju, A.; Patch, R. J. Tetrahedron
Lett. 1997, 38, 355–358.
22. Jolicoeur, B.; Chapman, E. E.; Thompson, A.; Lubell, W. D. Tetrahedron 2006, 62,
11531–11563.
23. Kong, X.; Migneault, D.; Valade, I.; Wu, X.; Gervais, F. US Patent 2007/0010573
A1, 2007.
emission and a 60% quantum yield in ethanol. In fact, most of the
radiative rate constants of around 108 sꢁ1 are the same within
experimental error (Table 1). However, the radiative rate constants
are significantly weaker for the pyrene compounds 18 compared to
those of the others, mostly because of the weaker quantum yield,
which may be attributed to the presence of aggregates.
In short, we have established new synthetic routes for function-
alization of Bodipy dyes with sulfonate residues. The use of unusual
betaine building blocks carrying a terminal alkyne allows cross-
coupling reactions to be effective under mild operational condi-
tions. In some cases, a two-step synthesis is required to first graft
the 1-dimethylamino-2-propyne fragment either on the dipyrro-
methene core or on the boron and to then quaternize the tertiary
amine centre with 1,3-propanesultone. Interestingly, in all cases
the optical properties are retained with respect to the non-substi-
tuted Bodipys. This work opens the door for the engineering of fluo-
rescent dyes in aqueous medium and a vast range of new
molecules, some being highly hydrophilic, can now be envisaged.
By extension of these protocols, the engineering of amphoteric
dyes bearing large functionalities and which are potentially able
to be properly grafted on surfaces should also be possible. Work
along these lines is currently in progress.
24. The crystal data of 18: C24H23NO3, H2O, M = 423.51, orthorhombic, space group
Pbca, a = 7.517(2), b = 19.331(3), c = 28.791(4) Å, V = 4183.7(14) Å3, Z = 8,
Dc = 1.345 g cmꢁ3
yellow,
[Rint = 0.047], 3834 unique, wR2 = 0.141 for all data, conventional R = 0.051
[( max = 0.001] on F-values of 2404 reflections with I > 2 (I), S = 1.018 for all
,
l(Mo-K
a
) = 0.186 mmꢁ1, F(0 0 0) = 1792, prismatic crystal,
size = 0.60 ꢂ 0.30 ꢂ 0.10 mm,
21,734
reflections
measured
D
r)
r
data and 273 parameters. Unit cell determination and intensity data collection
(2h = 50.7°) were performed on a Enraf-Nonius KAPPA CCD diffractometer at
293(2) K. Structure solution by direct methods and refinement by full-matrix
least-squares on F2. Programs: COLLECT [Nonius, B. V. (1999)], HKL2000
[Otwinowski, Z.; Minor, W. 1997], SHELX97 [Sheldrick, G. M. 2008]. CCDC
[deposit No: 716693] contains the supplementary crystallographic data for this
Letter. These data can be obtained free of charge from the Cambridge
25. (a) Robertson, J. M.; White, J. G. J. Chem. Soc. 1947, 358–368; (b) Ziessel, R.;
Goze, C.; Ulrich, G.; Césario, M.; Retailleau, P.; Harriman, A.; Rostron, J. P. Chem.
Eur. J. 2005, 11, 7366–7378.
26. Spackman, M. A.; Jayatilaka, D. CrystEngCommun 2009, 11, 19–32.
27. Olmsted, J., III J. Phys. Chem. 1979, 83, 2581–2584.