pubs.acs.org/joc
This utility arises from the high acidity of the fullerenyl C-H
One-step Synthesis of Fullerene Hydride C60H2 via
Hydrolysis of Acylated Fullerenes
bond (for C60H2, pKa1 = 4.7, pKa2 =16),6 which facilitates
deprotonation of hydrogenated fullerenes (with very mild bases)
to afford fullerene anions for further functionalization. C60H2 is
also of fundamental interest as a model compound for other
fullerene derivatives7,8 and has been the subject of several
experimental and theoretical studies.9 In addition, C60H2 has
been shown to be an effective hole transport material with
potential applications in organic field-effect transistors (OFETs)
and organic light-emitting devices (OLEDs).10 These diverse
applications of C60H2, the simplest possible hydride of C60, have
made any synthetic method leading to its preparation of con-
siderable practical interest.
Manolis D. Tzirakis,† Mariza N. Alberti,† Leanne C. Nye,‡
Thomas Drewello,‡,§ and Michael Orfanopoulos*,†
†Department of Chemistry, University of Crete, 71003 Voutes,
Heraklion, Crete, Greece, and ‡Department of Chemistry,
University of Warwick, Coventry CV4 7AL, U.K.
§Present address: Physical Chemistry I, University
Erlangen-Nuremberg, 91058 Erlangen, Germany
Received May 7, 2009
Established routes toward the synthesis of the hydroge-
nated fullerene C60H2 include hydroboration,11,12 hydrozir-
conation,13 photoinduced electrontransfer,14 dissolvingmetal
reductions,15,16 ultrasonically irradiating solutions of C60 in
2-
decahydronaphthalene,17 electrochemical reduction to C60
followed by protonation,18 as well as chemical reduction with
diimide or chromous acetate19,12 and NaBH4.20,5b Since hy-
drogen reduction of C60 is of fundamental interest, catalytic
hydrogenation has been also utilized for the synthesis of
C60H2 in solution with rhodium(0) on alumina,21 palladium
or palladium on carbon,22 as well as in the solid phase.23,4
The hitherto unexplored class of acylated fullerene
compounds has been shown to be excellent C60H2 pre-
cursors. Upon a simple treatment with basic Al2O3, they
are hydrolyzed quantitatively into C60H2. This key
feature led to the development of a new, straightforward
protocol for the selective synthesis of the simplest [60]
fullerene hydride, C60H2. This protocol may offer an
advantageous alternative to previously known methods
for the synthesis of C60H2 allowing for a rapid access to
C60H2 in good yield and high purity without tedious
separating processes.
(6) Niyazymbetov, M. E.; Evans, D. H.; Lerke, S. A.; Cahill, P. A.;
Henderson, C. C. J. Phys. Chem. 1994, 98, 13093–13098.
(7) Yi, J.-Y.; Bernholc, J. Chem. Phys. Lett. 2005, 403, 359–362.
(8) Henderson, C. C.; Rohlfing, C. M.; Cahill, P. A. Chem. Phys. Lett.
1993, 213, 383–388.
(9) (a) Guarr, T. F.; Meier, M. S.; Vance, V. K.; Clayton, M. J. Am.
Chem. Soc. 1993, 115, 9862–9863. (b) Boulas, P.; D’Souza, F.; Henderson,
C. C.; Cahill, P. A.; Jones, M. T.; Kadish, K. M. J. Phys. Chem. 1993, 97,
13435–13437. (c) Alemany, L. B.; Gonzalez, A.; Luo, W.; Billups, W. E.;
Willcott, M. R.; Ezell, E.; Gozansky, E. J. Am. Chem. Soc. 1997, 119, 5047–
5048. (d) Bettinger, H. F.; Rabuck, A. D.; Scuseria, G. E.; Wang, N.-X.;
Litosh, V. A.; Saini, R. K.; Billups, W. E. Chem. Phys. Lett. 2002, 360, 509–
514. (e) Meier, M. S.; Spielmann, H. P.; Bergosh, R. G.; Haddon, R. C. J. Am.
Chem. Soc. 2002, 124, 8090–8094.
(10) Tokunaga, K.; Ohmori, S.; Kawabata, H.; Matsushige, K. Jpn. J.
Appl. Phys. 2008, 47, 1089–1093.
(11) Henderson, C. C.; Cahill, P. A. Science 1993, 259, 1885–1887.
(12) Avent, A. G.; Darwish, A. D.; Heimbach, D. K.; Kroto, H. W.;
Meidine, M. F.; Parsons, J. P.; Remars, C.; Roers, R.; Ohashi, O.; Taylor, R.;
Walton, D. R. M. J. Chem. Soc., Perkin Trans. 2 1994, 15–22.
€
(13) Ballenweg, S.; Gleiter, R.; Kratschmer, W. Tetrahedron Lett. 1993,
34, 3737–3740.
(14) (a) Fukuzumi, S.; Suenobu, T.; Kawamura, S.; Ishida, A.; Mikami, K.
Chem. Commun. 1997, 291–292. (b) Fukuzumi, S.; Suenobu, T.; Patz, M.;
Hirasaka, T.;Itoh, S.;Fujitsuka, M.;Ito, O. J. Am. Chem. Soc. 1998, 120, 8060–
8068.
(15) (a) Meier, M. S.; Weedon, B. R.; Spielmann, H. P. J. Am. Chem. Soc.
1996, 118, 11682–11683. (b) Bergosh, R. G.; Meier, M. S.; Laske Cooke,
J. A.; Spielmann, H. P.; Weedon, B. R. J. Org. Chem. 1997, 62, 7667–7672.
(16) Meier, M. S.; Corbin, P. K.; Vance, V. K.; Clayton, M.; Mollman,
M.; Poplawska, M. Tetrahedron Lett. 1994, 35, 5789–5792.
(17) Mandrus, D.; Kele, M.; Hettich, R. L.; Guiochon, G.; Sales, B. C.;
Boatner, L. A. J. Phys. Chem. B 1997, 101, 123–128.
(18) Cliffel, D. E.; Bard, A. J. J. Phys. Chem. 1994, 98, 8140–8143.
(19) Billups, W. E.; Luo, W.; Gonzalez, A.; Arguello, D.; Alemany, L. B.;
Marriott, T.; Saunders, M.; Jimenez-Vazquez, H. A.; Khong, A. Tetrahedron
Lett. 1997, 38, 171–174.
Reduced fullerenes, also known as fullerene hydrides, are the
simplest derivatives of the fullerene family of carbon allotropes.1
Due to its unique molecular structure, fullerene is the only form
of carbon which potentially can be chemically hydrogenated and
dehydrogenated reversibly,2 thereby making such structures of
interest as high-capacity hydrogen-storage materials.3,4 Further-
more, hydrogenated fullerenes, and especially C60H2, have
attracted considerable interest due to their synthetic utility as a
versatile starting material for further fullerene derivatization.5
(1) (a) Goldshleger, N. F.; Moravskii, A. P. Russ. Chem. Rev. 1997, 66,
323–342. (b) Nossal, J.; Saini, R. K.; Alemany, L. B.; Meier, M.; Billups,
W. E. Eur. J. Org. Chem. 2001, 4167–4180.
(2) Withers, J. C.; Loutfy, R. O.; Lowe, T. P. Fullerene Sci. Technol. 1997,
5, 1–31.
(3) Peera, A. A.; Alemany, L. B.; Billups, W. E. Appl. Phys. A: Mater. Sci.
Process. 2004, 78, 995–1000.
(4) Jin, C.; Hettich, R.; Compton, R.; Joyce, D.; Blencoe, J.; Burch, T.
J. Phys. Chem. 1994, 98, 4215–4217.
(20) Wang, G.-W.; Li, Y.-J.; Li, F.-B.; Liu, Y.-C. Lett. Org. Chem. 2005,
2, 595–598.
(21) Becker, L.; Evans, T. P.; Bada, J. L. J. Org. Chem. 1993, 58, 7630–
7631.
(22) Tarasov, B. P.; Fokin, V. N.; Moravskii, A. P.; Shul’ga, Y. M. Russ.
Chem. Bull. 1996, 45, 1778–1779.
(23) Morosin, B.; Henderson, C.; Schirber, J. E. Appl. Phys. A 1994, 59,
179–180.
(5) (a) Meier, M. S.; Bergosh, R. G.; Gallagher, M. E.; Spielmann, H. P;
Wang, Z. J. Org. Chem. 2002, 67, 5946–5952. (b) Li, Y.-J.; Wang, G.-W.; Li,
J.-X.; Liu, Y.-C. New J. Chem. 2004, 28, 1043–1047.
5746 J. Org. Chem. 2009, 74, 5746–5749
Published on Web 07/02/2009
DOI: 10.1021/jo900934j
r
2009 American Chemical Society