S. G. Parameswarappa, F.C. Pigge / Tetrahedron Letters 52 (2011) 4357–4359
4359
S.; Wulff, B. S.; Bywater, R. P. J. Med. Chem. 2004, 47, 888; (g) Kazmierski, W. M.;
Furfine, E.; Spaltenstein, A.; Wright, L. L. Bioorg. Med. Chem. Lett. 2002, 12, 3431.
2. Smyth, M. S.; Rose, J.; Mehrotra, M. M.; Heath, J.; Ruhter, G.; Schotten, T.;
Seroogy, J.; Volkots, D.; Pandey, A.; Scarborough, R. M. Bioorg. Med. Chem. Lett.
2001, 11, 1289.
3. Yang, H.; Lin, X.-F.; Padilla, F.; Gabriel, S. D.; Heilek, G.; Ji, C.; Sankuratri, S.; de
Rosier, A.; Berry, P.; Rotstein, D. M. Bioorg. Med. Chem. Lett. 2009, 19, 209.
4. Shamovsky, I.; de Graaf, C.; Alderin, L.; Bengtsson, M.; Bladh, H.; Börjesson, L.;
Connolly, S.; Dyke, H. J.; van den Heuvel, M.; Johansson, H.; Josefsson, B.-G.;
Kristoffersson, A.; Linnanen, T.; Lisius, A.; Männikkö, R.; Nordén, B.; Price, S.;
Ripa, L.; Rognan, D.; Rosendahl, A.; Skrinjar, M.; Urbahns, K. J. Med. Chem. 2009,
52, 7706.
5. (a) Burgey, C. S.; Potteiger, C. M.; Deng, J. Z.; Mosser, S. D.; Salvatore, C. A.; Yu,
S.; Roller, S.; Kane, S. A.; Vacca, J. P.; Williams, T. M. Bioorg. Med. Chem. Lett.
2009, 19, 6368; See also: (b) Degnan, A. P.; Conway, C. M.; Dalterio, R. A.; Macci,
R.; Mercer, S. E.; Schartman, R.; Xu, C.; Dubowchik, G. M.; Macor, J. E. Bioorg.
Med. Chem. Lett. 2009, 19, 3555.
presence of Pd/C catalyst afforded the N-protected spiro-bis(piper-
idine) 8 via selective reduction of the dihydropyridine ring in
excellent yield (Scheme 2). Additionally, 7a is also amenable to
alkylation with carbon electrophiles, as shown in the reaction with
propargyl bromide to give 9. Subsequent gold-catalyzed cycloiso-
merization of 9 was found to proceed smoothly to provide the no-
vel tricyclic compound 10.8,11
In conclusion, intramolecular spirocyclization of 4-aminoethyl
substituted pyridines offers a viable route for accessing 3,9-diaza-
spiro[5.5]undecane derivatives. Moreover, products of this cycliza-
tion manifold (7) are susceptible to further synthetic manipulation
and so may serve as valuable medicinal chemistry building blocks.
6. Stocks, M. J.; Alcaraz, L.; Bailey, A.; Bowers, K.; Donald, D.; Edwards, H.; Hunt,
F.; Kindon, N.; Pairaudeau, G.; Theaker, J.; Warner, D. J. Bioorg. Med. Chem. Lett.
2010, 20, 7458.
7. (a) Yang, H.; Lin, X.-F.; Padilla, F.; Rotstein, D. M. Tetrahedron Lett. 2008, 49,
6371. and references cited.; (b) Macleod, C.; Martinez-Teipel, B. I.; Barker, W.
M.; Dolle, R. E. J. Comb. Chem. 2006, 8, 132.
Acknowledgments
We thank the Roy J. Carver Charitable Trust for generous finan-
cial support (Grant No. 09-3279). FCP thanks the University of Iowa
College of Liberal Arts & Sciences and the Obermann Center for Ad-
vanced Studies for sponsorship of a Career Development Award.
8. Parameswarappa, S. G.; Pigge, F. C. Org. Lett. 2010, 12, 3434.
9. For other examples of intramolecular nucleophilic additions to pyridines
leading to spiro-dihydropyridine products, see: (a) Brice, H.; Clayden, J. Chem.
Commun. 2009, 1964; (b) Arnott, G.; Brice, H.; Clayden, J.; Blaney, E. Org. Lett.
2008, 10, 3089; (c) Arnott, G.; Clayden, J.; Hamilton, S. D. Org. Lett. 2006, 8,
5325; (d) Goldmann, S.; Born, L.; Kazda, S.; Pittel, B.; Schramm, M. J. Med. Chem.
1990, 33, 1413; (e) Weller, D. D.; Stirchak, E. P.; Weller, D. L. J. Org. Chem. 1983,
48, 4597.
Supplementary data
Supplementary data (compound characterization data for 6–10)
associated with this article can be found, in the online version, at
10. The preparation of 7a is representative. Under Ar, a solution of 6a (0.50 g,
1.6 mmol) in dichloromethane (10 mL) was cooled to 0 °C. Titanium
isopropoxide (0.24 mL, 0.8 mmol) was added and the reaction was stirred for
2 min. Ethyl chloroformate (1.52 mL, 2.4 mmol) was then added and the
reaction stirred an additional 5–7 min. The reaction mixture was then loaded
directly onto a silica gel column and purified using 75% EtOAc in hexanes as the
eluent to afford 7a as a yellow gummy oil (0.44 g, 72%). 1H NMR (300 MHz,
CDCl3, mixture of rotamers) d 7.37–7.26 (m, 5H), 6.94–6.83 (m, 2H), 4.84–4.66
(m, 4H), 4.25 (q, J = 7.1 Hz, 2H), 3.74 (s, 3H), 3.44 (s, 1H), 3.37–3.18 (m, 2H),
2.11–2.00 (m, 1H), 1.76–1.67 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz,
CDCl3, mixture of rotamers) d 169.2, 164.6, 151.1, 136.7, 128.8, 128.1, 127.7,
123.3, 109.6, 109.1, 107.7, 107.1, 63.0, 60.9, 52.3, 50.3, 41.6, 36.9, 35.1, 14.5. IR
References and notes
1. (a) Wang, J.; Cady, S. D.; Balannik, V.; Pinto, L. H.; DeGrado, W. F.; Hong, M. J.
Am. Chem. Soc. 2009, 131, 8066; (b) Methot, J. L.; Hamblett, C. L.; Mamprien, D.
M.; Jong, J.; Harsch, A.; Szewczak, A. A.; Dahlberg, W. K.; Middleton, R. E.;
Hughes, B.; Fleming, J. C.; Wang, H.; Kral, A. M.; Ozerova, N.; Cruz, J. C.; Haines,
B.; Chenard, M.; Kenific, C. M.; Secrist, J. P.; Miller, T. A. Bioorg. Med. Chem. Lett.
2008, 18, 6104; (c) Xiao, D.; Palani, A.; Aslanian, R.; McKittrick, B. A.; McPhail, A.
T.; Correll, C. C.; Phelps, P. T.; Anthes, J. C.; Rindgen, D. Bioorg. Med. Chem. Lett.
2009, 19, 783; (d) Oberdorf, C.; Schepmann, D.; Vela, J. M.; Diaz, J. L.; Holenz, J.;
Wünsch, B. J. Med. Chem. 2008, 51, 6531; (e) Bienaymé, H.; Chêne, L.; Grisoni, S.;
Grondin, A.; Kaloun, E.-B.; Poigny, S.; Rahali, H.; Tam, E. Bioorg. Med. Chem. Lett.
2006, 16, 4830; (f) Bondensgaard, K.; Ankersen, M.; Thøgersen, H.; Hansen, B.
(thin film)
21H24N2O5Na [M+Na]+, 407.1583; found 407.1593.
11. Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
m ) 1722, 1686, 1646. HRMS (ESI): calculated for
(cmꢀ1
C