A Zinc Porphyrin Bearing Two Lateral dpp-Containing Rings
chromatography (dichloromethane/methanol, 100:1) to yield
macrocycle 3 as a pale-yellow solid (0.440 g, 57%). 1H NMR
(300 MHz, CDCl3): δ = 9.84 (s, 1 H, aldehyde H), 8.41 (d, 3J =
9.0 Hz, 4 H, Ho), 8.26 (d, 3J = 8.4 Hz, 2 H, H3,8), 8.07 (d, 3J =
Acknowledgments
We are grateful to the CNRS for financial support. We also thank
the Ecole Normale Supérieure (Paris) for a fellowship to C. Roche.
We are also grateful to Dr. J.-P. Collin for his kind support.
3
8.4 Hz, 2 H, H4,7), 7.75 (s, 2 H, H5,6), 7.14 (d, J = 9.0 Hz, 4 H,
Hm), 7.03 (d, 4J = 2.4 Hz, 2 H, HoЈЈ), 6.91 (t, 4J = 2.3 Hz, 1 H,
HpЈЈ), 4.32–4.36 (m, 4 H, CH2), 4.20–4.23 (m, 4 H, CH2), 3.93–3.97
(m,
8 H, CH2) ppm. ES-MS: m/z = 643.25 [M +
H]+.
[1] J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc., Chem.
Commun. 1992, 1131–1133.
[2] M. S. Tolley, J. W. Wheeler, P. R. Ashton, M. R. Johnston, J. F.
Stoddart, J. Chem. Soc., Chem. Commun. 1992, 1128–1131.
[3] L. Flamigni, V. Heitz, J.-P. Sauvage, Struct. Bonding (Berlin)
2006, 121, 217–261.
C39H34N2O7·0.5H2O·CH2Cl2 (736.64): calcd. C 65.22, H 5.07, N
3.80; found C 65.38, H 5.05, N 3.56.
ZnII–Porphyrin 1: To a solution of macrocyclic aldehyde 3 (350 mg,
0.546 mmol) in dry dichloromethane (55 mL) was added trifluoro-
acetic acid (218 µL, 2.93 mmol) and 5-mesityldipyrromethane (4;
147 mg, 0.546 mmol). The flask was protected from light, and the
solution was stirred for 2 h under an atmosphere of argon. DDQ
(2,3-dichloro-5,6-dicyanobenzoquinone; 210 mg, 0.869 mmol) was
added, and the solution was stirred under an atmosphere of argon
for an additional 1 h. A solution of Na2CO3 (1.4 g) in water
(40 mL) was added, and the solution was stirred vigorously for
30 min. The two phases were separated, and the aqueous layer was
washed with dichloromethane (2ϫ15 mL). The organic solvents
were evaporated, and the compound was purified by silica gel
chromatography (dichloromethane/methanol, 100:0.5). After a sec-
ond purification by flash chromatography (silica; dichloromethane/
methanol, 100:0.2), the free-base porphyrin (97 mg, 0.053 mmol)
was obtained and directly metallated. It was dissolved in dichloro-
methane (80 mL) and a solution of Zn(OAc)2·2H2O (95 mg,
0.430 mmol) in methanol (20 mL) was then added. The mixture
was heated at reflux for 8 h. Then, an aqueous solution of [EDTA]-
Na4 (0.1 , 45 mL) was added, and the biphasic mixture was vigor-
ously stirred for 24 h at room temperature. The organic layer was
separated and washed with water (3ϫ30 mL). After evaporation,
compound 1 was obtained as a violet solid (93 mg, 19%). 1H NMR
[4] a) J.-P. Sauvage, J.-P. Collin, J. A. Faiz, J. Frey, V. Heitz, C.
Tock, J. Porphyrins Phthalocyanines 2008, 12, 881–905; b) M.-
J. Blanco, M. C. Jimenez, J.-C. Chambron, V. Heitz, M. Linke,
J.-P. Sauvage, Chem. Soc. Rev. 1999, 28, 293–305.
[5] K. Chichak, M. C. Walsh, N. R. Branda, Chem. Commun.
2000, 847–848.
[6] T. Ikeda, M. Asakawa, T. Shimizu, New J. Chem. 2004, 28,
870–873.
[7] M. J. Gunter, N. Bampos, K. D. Johnstone, J. K. M. Sanders,
New J. Chem. 2001, 25, 166–173.
[8] J. Wu, F. Fang, W.-Y. Lu, J.-L. Hou, C. Li, Z.-Q. Wu, X.-K.
Jiang, Z.-T. Li, Y.-H. Yu, J. Org. Chem. 2007, 72, 2897–2905.
[9] A. S. D. Sandanayaka, N. Watanabe, K.-I. Ikeshita, Y. Araki,
N. Kihara, Y. Furusho, O. Ito, T. Takata, J. Phys. Chem. B
2005, 109, 2516–2525.
[10] K. Li, D. I. Schuster, D. M. Guldi, M.-A. Herranz, L. Ech-
egoyen, J. Am. Chem. Soc. 2004, 126, 3388–3389.
[11] D. I. Schuster, K. Li, D. M. Guldi, J. Ramey, Org. Lett. 2004,
6, 1919–1922.
[12] M. J. Gunter, T. P. Jeynes, P. Turner, Eur. J. Org. Chem. 2004,
193–208.
[13] L. Flamigni, A. M. Talarico, S. Serroni, F. Puntoriero, M. J.
Gunter, M. R. Johnston, T. P. Jeynes, Chem. Eur. J. 2003, 9,
2649–2659.
[14] P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M.
Nolte, Nature 2003, 424, 915–918.
[15] a) F. Hajjaj, Z. S. Yoon, M.-C. Yoon, J. Park, A. Satake, D.
Kim, Y. Kobuke, J. Am. Chem. Soc. 2006, 128, 4612–4623; b)
A. Satake, Y. Kobuke, Org. Biomol. Chem. 2007, 5, 1679–1691.
[16] A. Tsuda, H. Hu, R. Tanaka, T. Aida, Angew. Chem. Int. Ed.
2005, 44, 4884–4888.
[17] L. Flamigni, B. Ventura, A. I. Oliva, P. Ballester, Chem. Eur. J.
2008, 14, 4214–4224.
3
(300 MHz, CD2Cl2): δ = 8.92 (d, J = 4.7 Hz, 4 H, HpyA), 8.67 (d,
3
3
3J = 4.6 Hz, 4 H, HpyB), 8.45 (d, J = 8.8 Hz, 8 H, Ho), 8.28 (d, J
3
= 8.4 Hz, 4 H, H3,8), 8.08 (d, J = 8.4 Hz, 4 H, H4,7), 7.77 (s, 4 H,
4
3
H
5,6), 7.42 (d, J = 2.4 Hz, 4 H, HoЈЈ), 7.20 (d, J = 8.8 Hz, 8 H,
4
Hm), 7.19 (s, 4 H, HmЈЈ), 7.04 (t, J = 2.4 Hz, 2 H, HpЈЈ), 4.31 (m,
16 H, CH2O), 3.91 (m, 16 H, CH2O), 2.58 (s, 6 H, CH3p), 1.75 (s,
12 H, CH3o) ppm. UV/Vis (CH2Cl2): λ (log ε) = 421 (5.76), 549
(4.37), 585 (3.63) nm. ES-MS: m/z = 1833.51 [M + H]+.
Pseudorotaxane 62+: A degassed solution of [Cu(MeCN)4](PF6)
(5.15 mg, 13.8ϫ10–6 mol) in CH3CN (3 mL) was added by cannula
to a degassed solution of 1 (12.2 mg, 6.65ϫ10–6 mol) in CH2Cl2
(10 mL), and the mixture was stirred under an atmosphere of argon
for 30 min. A degassed solution of 2,9-dianisyl-1,10-phenan-
throline (5; 5.42 mg, 13.8ϫ10–6 mol) in CH2Cl2 (5 mL) was then
added by cannula. After stirring for 3 h at room temperature, the
solvent was evaporated. The solid was dissolved in acetonitrile and
filtered. The solvent was then evaporated to give pseudorotaxane
62+·2PF6 in quantitative yield (18.0 mg). 1H NMR (300 MHz,
CD2Cl2): δ = 8.90 (d, 3J = 4.8 Hz, 4 H, HpyA), 8.64 (d, 3J = 8.4 Hz,
[18] a) R. A. Haycock, C. A. Hunter, D. A. James, U. Michelsen,
L. R. Sutton, Org. Lett. 2000, 2, 2435–2438; b) R. A. Haycock,
A. Yartsev, U. Michelsen, V. Sundström, C. A. Hunter, Angew.
Chem. Int. Ed. 2000, 39, 3616–3619.
[19] E. Iengo, E. Zangrando, E. Alessio, Acc. Chem. Res. 2006, 39,
841–851.
[20] D. Paul, J. A. Wytko, M. Koepf, J. Weiss, Inorg. Chem. 2002,
41, 3699–3704.
[21] M. Tominaga, K. Suzuki, M. Kawano, T. Kusukawa, T. Oseki,
S. Sakamoto, K. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed.
2004, 43, 5621–5625.
[22]
a) A. Tsuda, T. Nakamura, S. Sakamoto, K. Yamaguchi, A.
Osuka, Angew. Chem. Int. Ed. 2002, 41, 2817–2821; b) N.
Aratani, A. Osuka, Chem. Commun. 2008, 4067–4069.
M. Hoffmann, C. J. Wilson, B. Odell, H. L. Anderson, Angew.
Chem. Int. Ed. 2007, 46, 3122–3125.
3
3
4 H, H4Ј,7Ј), 8.58 (d, J = 4.6 Hz, 4 H, HpyB), 8.50 (d, J = 8.2 Hz,
4 H, H4,7), 8.25 (s, 4 H, H5Ј,6Ј), 8.04 (s, 4 H, H5,6), 7.92 (d, 3J =
3
[23]
8.3 Hz, 4 H, H3Ј,8Ј), 7.89 (d, J = 8.0 Hz, 4 H, H3,8), 7.53 (s, 4 H,
HoЈЈ), 7.52 (d, 3J = 8.6 Hz, 8 H, HoЈ), 7.32 (d, J = 8.4 Hz, 8 H, Ho),
[24] D. B. Amabilino, J.-P. Sauvage, New J. Chem. 1998, 22, 395–
3
7.29 (m, 2 H, HpЈЈ), 7.09 (s, 4 H, HmЈЈ), 6.12 (d, J = 8.6 Hz, 8 H,
409.
3
HmЈ), 6.05 (d, J = 8.6 Hz, 8 H, Hm), 4.43 (m, 8 H, CH2O), 3.97
[25] L. Flamigni, A. M. Talarico, J.-C. Chambron, V. Heitz, M.
Linke, N. Fujita, J.-P. Sauvage, Chem. Eur. J. 2004, 10, 2689–
2699.
[26] J. Frey, W. Dobbs, V. Heitz, J.-P. Sauvage, Eur. J. Inorg. Chem.
2007, 17, 2416–2419.
(m, 8 H, CH2O), 3.72 (m, 8 H, CH2O), 3.67 (m, 8 H, CH2O), 3.52
(s, 12 H, OMe), 2.35 (s, 6 H, CH3p), 1.68 (s, 12 H, CH3o) ppm.
UV/Vis (CH2Cl2): λ (log ε) = 421 (5.84), 548 (4.51), 585 (3.79) nm.
ES-MS: m/z = found 1371.37 [M / 2]+.
Eur. J. Org. Chem. 2009, 2795–2800
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2799