116
M. Cao et al. / Journal of Molecular Catalysis B: Enzymatic 67 (2010) 111–116
a larger amount of ␥-PGA than the clone consisting of only pgs-
BCA. It was indicated that an increase supply of d-glutamate
by co-expression of such two genes probably resulted in higher
polymer production. At present, the authors are looking for the
factors affecting synthesis of ␥-PGA and applying co-expression
of synthetase and racemase methods to improve the production
efficiency in the recombinant strains.
References
[1] M. Ashiuchi, H. Misono, Appl. Microbiol. Biotechnol. 59 (2002) 9–14.
[2] M. Ashiuchi, T. Kamei, H. Misono, J. Mol. Catal. B 23 (2003) 101–106.
[3] M. Ashiuchi, K. Shimanouchi, H. Nakamura, T. Kamei, K. Soda, C. Park, M.H.
Sung, H. Misono, Appl. Environ. Microbiol. 70 (2004) 4249–4255.
[4] G. Ivanovics, L. Erdos, Z. Immunitatsforsch. 90 (1937) 5–19.
[5] S. Makino, I. Uchida, N. Terakado, C. Sasakawa, M. Yoshikawa, J. Bacteriol. 171
(1989) 722–730.
[6] F.F. Hezayen, B.H.A. Rehm, R. Eberhardt, A. Steinbüchel, Appl. Microbiol.
Biotechnol. 54 (2000) 319–325.
[7] M. Ashiuchi, T. Kamei, D.H. Baek, S.Y. Shin, M.H. Sung, K. Soda,
T. Yagi, H. Misono, Appl. Microbiol. Biotechnol. 57 (2001) 764–
769.
4. Conclusion
In this study, a ␥-PGA producing strain was isolated from natto
and identified as Bacillus licheniformis NK-03. The pgsBCA genes
encoding the ␥-PGA sythetase were cloned from NK-03 and trans-
formed to E. coli and C. glutamicum. Enzyme digestion tests of
resultant vector and analysis of fermented production suggested
that the genes were expressed in both strains. The deduced PgsBCA
amide acids from NK-03 were greatly homologous to other Bacillus
species, and PgsC was the most conserved part. ␥-PGA produced
by the recombinant strains E. coli and C. glutamicum consisted of
about 3% d-isomer and 97% l-isomer, which was similar to the wild
strain. Although the yield of the recombinant C. glutamicum was
not high, it had already carried out the ␥-PGA production without
adding any glutamic acid into medium and offered us a outstanding
protocol of ␥-PGA synthesis by molecular modification. The rea-
sons inducing the low production may be that the recombinant
plasmid was not expressed adequately or the fermentation con-
ditions were not optimized. Therefore, selecting better expression
plasmids and effective promoters will be introduced to perform
anticipated production.
[8] G.A. Birrer, A.M. Cromwick, R.A. Gross, Int. J. Bio. Macromol. 16 (1994) 765–769.
[9] Y.H. Ko, R.A. Gross, Biotechnol. Bioeng. 57 (1998) 430–437.
[10] A. Goto, M. Kunioka, Biosci. Biotech. Biochem. 63 (1992) 110–115.
[11] J.H. Jeong, J.N. Kim, Y.J. Wee, H.W. Ryu, Bioresour. Technol. 101 (2010)
4533–4539.
[12] I.L. Shih, Y.T. Van, C.J. Shieh, Process. Biochem. 40 (2005) 2827–2832.
[13] Y. Ito, T. Tanaka, T. Ohmachi, Y. Asada, Biosci. Biotech. Biochem. 60 (1996)
1239–1242.
[14] C. Cheng, Y. Asada, T. Aida, Agric. Biol. Chem. 53 (1989) 2369–2375.
[15] N.A. Soliman, M.M. Berekaa, Y.R. Abdel-Fattah, Appl. Microbiol. Biotechnol. 69
(2005) 259–267.
[16] I.L. Shih, Y.T. Van, Bioresour. Technol. 79 (2001) 207–225.
[17] M.H. Sung, C. Park, K.S. Kim, J.H. Park, Y.H. Choi, H.B. Kim, S.P. Hong, I.H. Lee,
C.M. Chung, KR/10-0062761, 08, 09, 2003.
[18] C. Park, J.C. Choi, Y.H. Choi, H. Nakamura, K. Shimanouchi, T. Horiuchi, H. Mis-
ono, T. Sewaki, K. Soda, M. Ashiuchi, M.H. Sung, J. Mol. Catal. B 35 (2005) 128–
133.
[19] J. Meerak, H. Iida, Y. Watanabe, M. Miyashita, H. Sato, Y. Nakagawa, Y. Tahara,
J. Gen. Appl. Microbiol. 53 (2007) 315–323.
[20] J. Sambrook, T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold
Spring Harbor Laboratory, New York, 1989.
[21] A. Felske, A. Wolterink, Lis.R. van, W.M. de Vos, A.D. Akkermans, FEMS Micro-
biol. Ecol. 30 (1999) 137–145.
[22] J.G. Holt, N.R. Krieg, P.H.A. Sneath, J.T. Staley, J. Stanley, Bergey’s Manual of
Systematic Bacteriology, 9th ed., Williams & Wilkins, Baltimore, 1984, pp.
559–562.
[23] M. Ashiuchi, K. Shimanouchi, T. Horiuchi, T. Kamei, H. Misono, Biosci. Biotech-
nol. Biochem. 70 (2006) 1794–1797.
[24] H. Inoue, H. Nojima, H. Okayama, Gene 96 (1990) 23–28.
[25] J.G. Adamson, T. Hoang, A. Crivici, G.A. Lajoie, Anal. Biochem. 202 (1992)
210–214.
[26] I.L. Shih, Y.T. Van, Y.N. Chang, Enzyme Microb. Technol. 31 (2002) 213–
220.
In recent work, we isolated a glutamic acid independent ␥-PGA
producing strain Bacillus amyloliquefaciens LL3, and cloned its pgs-
BCA and ywtC genes successfully. Compared with B. subtilis and B.
licheniformis, the nucleotide sequences of pgsBCA from LL3 were
much less homologous. The future in-depth study on this pgsBCA
operon may give us some revelations about the mechanism of ␥-
PGA synthesis.
[27] I.B. Bajaj, S.S. Lele, R.S. Singhal, Bioresour. Technol. 100 (2009) 826–
832.
[28] J. Yao, J. Jing, H. Xu, J.F. Liang, Q. Wu, X.H. Feng, P.K. Ouyang, J. Mol. Catal. B 56
(2009) 158–164.
Acknowledgements
This work was supported by the National 863 High-Tech
R&D Program of China (2007AA06Z323), Tianjin Scientific project
(China) (09JGZDJC18400, 09ZCKFSH00800).
[29] M. Ashiuchi, K. Soda, H. Misono, Biochem. Biophys. Res. Commun. 263 (1999)
6–12.
[30] M. Ashiuchi, C. Nawa, T. Kamei, J.J. Song, S.P. Hong, M.H. Sung, K. Soda, H. Misono,
Eur. J. Biochem. 268 (2001) 5321–5328.
[31] T. Candela, A. Fouet, Mol. Microbiol. 60 (2006) 1091–1098.