C O M M U N I C A T I O N S
As illustrated in Figure 1, the most stable B-chiral pretransition state
aldehyde-6 (i.e., 14) complex positions the aldehyde cis to the TMS
group in an anti aldehyde-6 adduct which is down with respect to
the BBD ring. A steric-based preference for a chairlike transition state
with these geometrical features was recently supported by calculations
at the B3LYP/6-31G* level for allylboration with the BBD reagents.13
In summary, this work reports the efficient stepwise construction
of optically pure 2-boryl-1,3-butadienes 6. As a new type of asymmetric
allylborating agent, 6 provides an extremely selective protocol for the
preparation of anti-1,2-disubstituted 3,4-pentadien-1-ols 8 as essentially
single diastereomers in enantiomerically pure form. The conversion
of 8 to substituted ꢀ-hydroxy acids 12 through ozonolysis and to
nonracemic δ-lactones 13 through Ru-catalyzed cyclocarbonylation
was demonstrated.
Figure 1. Pretransition state complex 14 with Spartan 06-generated space-
filling model.
workup (30% H2O2, 3 M NaOH), silica gel chromatography provides
the homoallenic carbinols 8 in 54-74% yield as essentially single
compounds (Table 1).
Acknowledgment. This work is dedicated to Professor Clayton
H. Heathcock. The support of the NSF (CHE-0848192) is gratefully
acknowledged. We thank Dr. Eda Canales and Mr. Jose´ Betancourt
for their help with this study.
Supporting Information Available: Experimental procedures,
analytical data, and selected spectra for 1-13, 15, and derivatives. This
Employing the Grignard reagent derived from cis-1-bromopro-
pene, we prepared the cis-vinylboranes 9 (10S, 10R, and (()-9,
96%, Z/E ) 96:4). These were converted to the cis-dienes 10 (3JH-H
) 10 Hz) which add smoothly to PhCHO to give the syn-alcohols
11 (71%, dr ) 96:4, 99% ee). This provided us with comparative
data for the diastereomeric composition of 8a whose NMR signals
were well resolved from those of 11. From (()-3, racemic alcohols
(()-8 were prepared and converted to the corresponding Alexakis
esters for analysis by 31P NMR. Under conditions where e1% of
the isomeric esters was observable, the enantiomeric purity of 8
was determined to be 98-99% ee. Under these conditions and by
References
(1) (a) Canales, E.; Gonza´lez, A. Z.; Soderquist, J. A. Angew. Chem., Int. Ed.
2007, 46, 397. (b) Gonza´lez, A. Z.; Soderquist, J. A. Org. Lett. 2007, 9,
1081. (c) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46,
359.
(2) (a) Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem.
Soc. 2005, 127, 8044. (b) Lai, C.; Soderquist, J. A. Org. Lett. 2005, 7,
799. (c) Herna´ndez, E.; Soderquist, J. A. Org. Lett. 2005, 7, 5397. (d)
Herna´ndez, E.; Canales, E.; Gonza´lez, E.; Soderquist, J. A. Pure Appl.
Chem. 2006, 7, 1389. (e) Gonza´lez, A. Z.; Canales, E.; Soderquist, J. A.
Org. Lett. 2006, 8, 3331. (f) Roma´n, J. G.; Soderquist, J. A. J. Org. Chem.
2007, 72, 9772. (g) Gonza´lez, A. Z.; Roma´n, J. G.; Gonza´lez, E.; Martinez,
J.; Medina, J. R.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2008,
130, 9218. (h) Gonza´lez, A. Z.; Roma´n, J. G.; Alicea, E.; Canales, E.;
Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 1269. (i) Soto-Cairoli, B.;
Soderquist, J. A. Org. Lett. 2009, 11, 401. (j) Mun˜oz-Herna´ndez, L.;
Soderquist, J. A. Org. Lett. 2009, 11, 2571.
1
both H and 13C NMR of 8, no evidence could be found for the
formation of syn diastereomeric products. This is expected due to
the pure trans geometry of 6.
(3) (a) Negishi, E.-I.; Yoshida, T. Chem. Commun. 1973, 606.
(4) (a) Brown, H. C.; Bhat, N. G.; Iyer, R. R. Tetrahedron Lett. 1991, 32,
3655. (b) Kamabuchi, A.; Miyaura, N.; Akira, S. Tetrahedron Lett. 1993,
34, 4827. (c) Guennouni, N.; Rasset-Deloge, C.; Carboni, B.; Vaultier, M.
Synlett 1992, 581. See also: (d) Renaud, J.; Graf, C.-D.; Oberer, L Angew.
Chem., Int. Ed. 2000, 39, 3101.
(5) (a) Nativi, C.; Taddei, M.; Mann, A. Tetrahedron 1989, 45, 1131. (b)
Micalizio, G. C.; Schreiber, S. L. Angew. Chem., Int. Ed. 2002, 41, 3272.
(c) Hamada, T.; Mizojiri, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2000,
122, 7138.
(6) Singaram, B.; Cole, T. E.; Brown, H. C. Organometallics 1984, 3, 774.
(7) (a) Soderquist, J. A.; Matos, K.; Burgos, C. H.; Lai, C.; Vaquer, J.; Medina,
J. R. In Contemporary Boron Chemistry; Davidson, M. G., Hughes, A. K.,
Marder, T. B., Wade, K., Eds.; Royal Society of Chemistry: Cambridge,
U.K., 2000; pp 472-482. (b) Soderquist, J. A; Matos, K.; Burgos, C. H.;
Lai, C.; Vaquer, J.; Medina, J. R.; Huang, S. D. In Organoboranes for
Syntheses; Ramachandran, P. V., Brown, H. C., Eds.; ACS Symposium
Series 783; American Chemical Society: Washington, DC, 2000; Chapter
13, pp 176-194. (c) See also: Colberg, J. C.; Rane, A.; Vaquer, J.;
Soderquist, J. A. J. Am. Chem. Soc. 1993, 115, 6065.
While the absolute stereochemistry of 8 was predictable based upon
a wide range of related asymmetric conversions with the 10-TMS-9-
BBD systems, we chose to convert 8d to the known (2R,3S)-ꢀ-hydroxy
acid 12 (80%) through ozonolysis to confirm our assignments.10 As
is apparent from this result, the 6f8f12 conversion provides a
potentially very versatile route to anti-R-substituted ꢀ-hydroxy acids
of high optical purities.
(8) (a) Soderquist, J. A.; Rivera, I. Tetrahedron Lett. 1989, 30, 3919. (b)
Soderquist, J. A.; Matos, K.; Ramos, J. Tetrahedron Lett. 1997, 38, 6639.
(c) Soderquist, J. A.; Martinez, J.; Oyola, Y.; Kock, I. Tetrahedron Lett.
2004, 45, 5541.
(9) The 2-boryl-1,3-butadienes 6 exhibit significantly downfield 11B NMR
signals (δ 80-82) compared to their vinylic precursors 4 (δ 72-74)
suggesting that boron’s -K effect is essentially absent in 6 (see: Soderquist,
J. A.; Santiago, B. Tetrahedron Lett. 1990, 31, 5113. This contrasts with
1-(10′-TMS-9′-BBD)-3-methyl-1,3-butadiene 15 (δ 72) where the -K effect
is uninhibited (see Supporting Information).
(10) Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H.
J. Org. Chem. 1991, 56, 2499.
(11) Yoneda, E.; Zhang, S.-W.; Zhou, D.-Y.; Onitsuka, K.; Takahashi, S. J.
Org. Chem. 2003, 68, 8571.
To further demonstrate useful conversions of 8, the R,ꢀ-unsaturated
δ-lactone 13 was prepared from 8a through a Takahashi Ru-catalyzed
cyclocarbonylation.11 Through this conversion, it is now possible to
prepare this important class of biologically active natural products in
optically pure form with anti-4,5-disubstitution.12
(12) Boucard, V.; Broustal, G.; Campagne, J. M. Eur. J. Org. Chem. 2007, 2007,
225.
(13) Sarotti, A. M.; Pellegrinet, S. C. J. Org. Chem. 2009, 74, 3562.
JA9047202
9
J. AM. CHEM. SOC. VOL. 131, NO. 29, 2009 9925