M.V. Go´mez et al. / Tetrahedron 65 (2009) 5328–5336
5335
carbazole 10 were determined by 1H NMR by integration of the 2-
H signal ( 6.4 ppm) using CH2Br2 as internal standard. Mp 141–
Supplementary data
d
143 ꢁC (hexane/ethyl acetate). dH (500 MHz, CDCl3) 7.73–7.68 (1H,
m, H5), 7.70 (2H, d, J 8.5, H20, H60), 7.41–7.38 (1H, m, H6), 7.37–7.34
(1H, m, H8), 7.2 (2H, d, J 8.5, H30, H50), 7.1 (1H, pseudo t, J 7.55, H7),
6.42–6.39 (1H, m, H2), 6.22–6.19 (1H, m, H3), 4.77–4.76 (1H, m,
H9a), 3.50 (2H, br s, H1, H4), 2.35 (3H, s, CH3), 1.75–1.72 (1H, m,
H10b), 1.50 (1H, d, J 10, H10a). dC (125 MHz, CDCl3) 145.0, 144.7,
133.4, 127.1, 102.7 (C4a, C5a, C8a, C10, C40), 138.0 (C2), 136.0 (C3),
132.2 (C8), 129.8 (C30, C50), 127.6 (C20, C60), 124.4 (C7), 123.8 (C6),
115.8 (C5), 72.0 (C9a), 52.0 (C1), 51.0 (C4), 44.0 (C10), 22.0 (CH3).
HRMS (EI, Mþ) (m/z) calcd for C20H18N2SO4: 382.0987. Found:
382.1077.
NMR spectra of compounds 7, 8, 9, 10, 12 and 16. Total electronic
energies, zero-point correction of energies and number of imagi-
nary frequencies of all stationary points. Cartesian coordinates of all
the stationary points. Supplementary data associated with this ar-
References and notes
1. Wenkert, E.; Moeller, P. D. R.; Piettre, S. R. J. Am. Chem. Soc. 1988, 110, 7188–7194.
2. Biolatto, B.; Kneeteman, M.; Mancini, P. Tetrahedron Lett. 1999, 40, 3343–3346.
3. Biolatto, B.; Kneeteman, M.; Mancini, P. M. Molecules 2000, 5, 393–395.
4. (a) Lee, L.; Snyder, J. K. Adv. Cycloaddit. 1999, 6, 119–171; (b) Hsieh, M.-F.; Rao, P.
D.; Liao, C.-C. Chem. Commun. 1999, 1441–1442; (c) Benson, S. C.; Lee, L.; Yang,
L.; Snyder, J. K. Tetrahedron 2000, 56, 1165–1180; (d) Padwa, A.; Brodney, M. A.;
Dimitroff, M. J. Org. Chem. 1998, 63, 5304–5305.
5. (a) Kraus, G. A.; Zhang, N.; Melekhow, A.; Jensen, J. H. Synlett 2001, 521–522; (b)
Kishbaugh, T. L. S.; Gribble, G. W. Tetrahedron Lett. 2001, 42, 4783–4795.
6. (a) Pelkey, E. T.; Gribble, G. W. Chem. Commun. 1997, 1873–1874; (b) Gribble,
G. W.; Pelkey, E. T.; Simon, W. M.; Trujillo, H. A. Tetrahedron 2000, 56,
10133–10140.
5.1.2.4. Reaction of 3-nitro-1-(p-toluenesulfonyl)indole 1 with N-
acetyl-N-isopropyl-1,3-butadiene 6. Indole 1 (0.237 g, 0.75 mmol)
and diene 6 (1.376 g, 9 mmol) were submitted to microwave irra-
diation in a closed vessel at 100 ꢁC for 5 min. The crude product was
purified by column chromatography on silica gel using hexane/
ethyl acetate (13:1) as the eluent, to give carbazole 7 in 71% yield.
7. (a) Le Noble, W.; Kelm, H. Angew. Chem. 1980, 19, 841–856; (b) Matsumoto, K.;
Sera, A.; Uchida, T. Synthesis 1985, 1–26; (c) Isaacs, N. Tetrahedron 1991, 47,
8463–8497; (d) Biolatto, B.; Kneeteman, M.; Paredes, E.; Mancini, P. M. E. J. Org.
Chem. 2001, 66, 3906–3912; (e) Chataigner, I.; Hess, E.; Toupet, L.; Piettre, S. R.
Org. Lett. 2001, 3, 515–518.
5.1.3. Diels–Alder reactions of other N-substituted heterocycles as
dienophiles: general procedure
A mixture of the corresponding N-substituted heterocycle and
the appropriate diene was submitted to microwave irradiation for
the appropriate time.
´
8. (a) Chretien, A.; Chataigner, I.; Piettre, S. R. Chem. Commun. 2005, 1351–1353;
(b) Chre´tien, A.; Chataigner, I.; Piettre, S. R. Tetrahedron 2005, 61, 7907–7915.
9. (a) Bose, A. K.; Manhas, M. J.; Banik, B. K.; Robb, E. W. Res. Chem. Intermed. 1994,
20, 1–11; (b) Caddick, S. Tetrahedron 1995, 52, 10403–10432; (c) Galema, S. A.
Chem. Soc. Rev. 1997, 25, 233–238; (d) Lidstro¨m, P.; Tierney, J.; Wathey, B.;
Westman, J. Tetrahedron 2001, 57, 9225–9283; (e) Kappe, C. O. Angew. Chem., Int.
Ed. 2004, 43, 6250–6284; (f) Hayes, B. L. Aldrichimica Acta 2004, 37, 66–77.
10. (a) Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.; Wiley-VCH:
Weinheim, 2006; (b) Hayes, B. L. In Microwave Synthesis: Chemistry at the Speed
of Light; CEM: Matthews, NC, 2002; (c) Microwave-Assisted Organic Synthesis;
Lidsto¨m, P., Tierney, J. P., Eds.; Blackwell Scientific: Oxford, 2005; (d) Kappe, C.
O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry. In Methods and
Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Folkers, G., Eds.;
Wiley: Weinheim, 2005; Vol. 25.
5.1.3.1. Reaction of 3-nitro-1-(p-toluenesulfonyl)pyrrole 11 with N-
acetyl-N-isopropylamine-1,3-butadiene 6. Pyrrole 11 (0.199 g,
0.75 mmol) and diene 6 (0.688 g, 4.5 mmol) were submitted to
microwave irradiation (50 W) in a closed vessel at 100 ꢁC for 5 min.
The crude product was purified by column chromatography using
hexane/ethyl acetate (25:1) as the eluent to give N-(p-toluene-
sulfonyl)indole 12 as a white solid. Yields were determined by 1H
NMR by integration of the 3-H signal (d 6.65 ppm) using CH2Br2 as
´
11. (a) de la Hoz, A.; Dıaz-Ortiz, A.; Moreno, A.; Langa, F. Eur. J. Org. Chem. 2000,
internal standard. Mp 78–80 ꢁC (dichloromethane/hexane). dH
(500 MHz, CDCl3) 7.99 (1H, d, J 8.3, H7), 7.75 (2H, d, J 8.5, H20, H60),
7.56 (1H, d, J 0.7, H2), 7.52 (1H, d, J 7.8, H4), 7.30 (1H, dd, J 7.4, 8.3,
H6), 7.25 (1H, dd, J 7.8, 7.4, H5), 7.20 (1H, d, J 8.5, H30, H50), 6.65 (1H,
d, J 0.7, H3), 2.33 (3H, s, CH3). dC (125 MHz, CDCl3) 145.0, 135.3,
134.7, 130.7 (C40, C10, C3a, C8a), 129.8 (C30, C50), 126.7 (C20, C60),
126.2 (C2), 124.6 (C6), 123.2 (C4), 121.3 (C5), 113.9 (C7), 108.9 (C3),
21.5 (CH3). MS (EI) m/z: 271 (Mþ).
3659–3673; (b) de la Hoz, A.; Dı´az-Ortiz, A.; Moreno, A.; Langa, F. In Microwaves
in Cycloadditions in Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH:
Weinheim, 2002; Chapter 9; (c) Bougrin, K.; Soufiaoui, M.; Bashiardes, G. In
Microwaves in Cycloadditions in Microwaves in Organic Synthesis, 2nd ed.; Loupy,
A., Ed.; Wiley-VCH: Weinheim, 2006, Chapter 11.
12. (a) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199–9223; (b) de la Hoz, A.;
Dı´az-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 168–178.
13. (a) Raner, K. D.; Strauss, C. R.; Vyskoc, F.; Mokbel, L. J. Org. Chem. 1993, 58, 950–
953; (b) Stuerga, D. In Microwave-Material Interactions and Dielectric Properties,
Key Ingredients for Mastery of Chemical Processes in Microwaves in Organic
Synthesis, 2nd ed.; Loupy, A., Ed.; Wiley-VCH: Weinheim, 2006; Chapter 1; (c)
Herrero, M. A.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008, 73, 36–47.
14. Dı´az-Ortiz, A.; de la Hoz, A.; Moreno, A. Curr. Org. Chem. 2004, 8, 903–918;
Langa, F.; de la Cruz, P.; de la Hoz, A.; Dı´az-Ortiz, A.; Dı´ez-Barra, E. Contemp. Org.
Synth. 1997, 4, 373–386.
5.1.3.2. Reaction of 4-nitropyrazole 15 and 4-nitro-1-(p-toluene-
sulfonyl)pyrazole 13 with 1,3-cyclohexadiene 2. Pyrazole 13 or 15
(0.88 mmol) and 1,3-cyclohexadiene 2 (0.07 g, 0.88 mmol) were
submitted to microwave irradiation (50 W) in a closed vessel at
15. (a) de la Hoz, A.; Dı´az-Ortiz, A.; Fraile, J. M.; Go´mez, M. V.; Mayoral, J. A.;
´
´
Moreno, A.; Saiz, A.; Vazquez, E. Synlett 2001, 753–757; (b) Dıaz-Ortiz, A.; Fraile,
J. M.; de la Hoz, A.; Go´ mez, M. A.; Mayoral, J. A.; Moreno, A.; Prieto, P.; Salva-
tella, L.; Saiz, A.; Va´zquez, E. Eur. J. Org. Chem. 2001, 2891–2899; (c) Moreno, A.;
Go´ mez, M. V.; Va´zquez, E.; de la Hoz, A.; Dı´az-Ortiz, A.; Prieto, P.; Mayoral, J. A.;
Pires, E. Synlett 2004, 1259–1263.
100 ꢁC for 15 min. Yields of 1-cyclohexen-3-ylpyrazole 16 were
1
determined by H NMR by integration of the H10 signal (
d
4.91 ppm) using CH3NO2 as internal standard. Mp 57.5–59.8 ꢁC
(hexane). dH (500 MHz, CDCl3) 8.19 (1H, s, H3), 8.10 (1H, s, H5),
6.25–6.22 (1H, m, H30), 5.83–5.80 (1H, m, H20), 4.91 (1H, br s, H10),
2.26–2.17 (2H, m, CH240), 2.15–1.99 (2H, m, CH260), 1.77–1.55 (2H,
m, CH250). dC (125 MHz, CDCl3) 135.9 (C3), 135.3 (C5), 127.4 (C30),
124.0 (C4), 122.9 (C20), 58.2 (C10), 29.7 (C40), 24.7 (C60), 18.5 (C50).
HRMS (EI, Mþ) (m/z) calcd for C9H11N3O2: 193.0851. Found:
193.0703.
16. Della Rosa, C.; Kneeteman, M.; Mancini, P. Tetrahedron Lett. 2007, 48,
1435–1438.
17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.
V.; Gui, Q.; Baboul, A. G.; Clifford, S.; Gioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Re-
vision A. 1; Gaussian: Pittsburgh, PA, 2003; p 18.
Acknowledgements
Financial support from the DGICYT of Spain through project
´
CTQ2007-60037/BQU and from the Consejerıa de Ciencia y Tecno-
´
logıa JCCM through projects PBI-06-0020 and PCI-08-0040 is
gratefully acknowledged. M.V.G. acknowledges the Ministerio de
Educacion y Ciencia for financial support.
18. Hehre, W. J.; Radom, L.; Schleyer, P. R.; Pople, J. A. Ab Initio Molecular Orbital
Theory; Wiley: New York, NY, 1986; pp 65–88 and references therein.