The reactivity of 2-cyclohexen-1-one (1i) in the present
rhodium-catalyzed alkynylation is very different from that
of linear enones (Table 3). Thus, the reaction of enone 1i
Table 2. Asymmetric Conjugate Alkynylation of Enonesa
Table 3. Conjugate Alkynylation of 2-Cyclohexen-1-one (1i)a
yield
entry
catalyst
R
(%)b
1
2
3
4
5
[Rh(OH)((R)-binap)]2
SiMe2(OH) (2o)
2
22
69
83
5
c
[Rh(OH)((R)-DTBM-segphos)]2 SiiPr2(OH) (2p)
[Rh(OH)(cod)]2
[Rh(OH)(cod)]2
[Rh(OH)(cod)]2
SiMe2(OH) (2o)
SiiPr2(OH) (2p)
H (2m)
a Reaction conditions: 1i (0.20 mmol), 2 (0.40 mmol), Rh catalyst (5
mol % of Rh) in 1,4-dioxane (0.4 mL) at 80 °C for 12 h. b Determined by
1H NMR. c In situ generated from [Rh(OH)(cod)]2 (5 mol % of Rh) and
(R)-DTBM-segphos (6 mol %).
with alkynylsilanol 2o in the presence of [Rh(OH)(binap)]2
at 80 °C for 12 h gave only 2% of ꢀ-alkynylketone 3i (entry
1). The reaction with bulky silanol 2p in the presence of the
rhodium/DTBM-segphos catalyst also gave a low yield of
3i (22%) (entry 2). On the other hand, it was found that the
rhodium complex bearing a diene as a ligand was effective
in the alkynylation of 1i. The use of [Rh(OH)(cod)]2 (cod
) 1,5-cyclooctadiene) gave 3i in 69% yield (entry 3). Higher
yield of 3i was obtained by use of silanol 2p as an
alkynylating reagent (entry 4). The use of terminal alkyne
2m resulted in a low yield of 3i here again (entry 5).
On the basis of the high catalytic activity of cod complex
[Rh(OH)(cod)]2 as demonstrated in Table 3, chiral diene
ligands20 were tested for the asymmetric alkynylation of
cyclic enones. The use of (R,R)-Bn-bod*20c,d enabled the
alkynylation to proceed with high enantioselectivity. Thus,
the reaction of cyclic enones 1i-1k with alkynylsilanol 2p
in the presence of Cs2CO3 (10 mol %) and a chiral diene-
rhodium catalyst, in situ generated from [RhCl(C2H4)2]2 (5
a Reaction conditions: 1 (0.20 mmol), 2o (0.30 mmol), [Rh(OH)((R)-
binap)]2 (5 mol % of Rh) in 1,4-dioxane/H2O (10:1, 0.4 mL). b Determined
by chiral HPLC analysis. c ee was not determined. d Performed with 2p
(0.4 mmol) in 1,4-dioxane (0.4 mL) at 80 °C for 24 h in the presence of
[Rh(OH)(cod)]2 (5 mol % of Rh) and (R)-DTBM-segphos (6 mol %).
1-4). Linear enones 1e and 1f, bearing a longer alkyl chain
at the ꢀ position, are also good substrates (entries 5 and 6).
On the other hand, the yield of ꢀ-alkynylation product was
low for the enone 1g, which is substituted with a phenyl
group at the ꢀ-position (entry 7). The alkynylation of
ꢀ-arylenones was greatly improved by use of (R)-DTBM-
segphos18 as a ligand and more bulky silanol 2p having two
isopropyl groups. Thus, the reaction of ꢀ-arylenones 1g and
1h with alkynylsilanol 2p gave ꢀ-alkynylketones 3g and 3h,
respectively, in good yields (82% and 73%) with high
enantioselectivity (96% and 98% ee; entries 8 and 9).19
(18) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264.
(19) The reaction of 1g with 2p in the presence of [Rh(OH)((R)-binap)]2
at 80 °C for 24 h gave 3g in 52% yield with 8% ee. On the other hand, the
reaction of 1g with 2o catalyzed by in situ generated [Rh(OH)((R)-DTBM-
segphos)]2 gave 3g in 14% yield.
(20) For a review of chiral diene ligands, see: (a) Defieber, C.; Gru¨tzmacher,
H.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4482 For selected
examples of the asymmetric reactions using chiral diene ligands, see: (b) Hayashi,
T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125,
11508. (c) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (d) Otomaru, Y.;
Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (e)
Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc.
2004, 126, 1628. (f) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira,
E. M. J. Am. Chem. Soc. 2005, 127, 10850. (g) La¨ng, F.; Breher, F.; Stein,
D.; Gru¨tzmacher, H. Organometallics 2005, 24, 2997. (h) Helbig, S.; Sauer,
S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. AdV. Synth. Catal. 2007,
349, 2331. (i) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem.
Soc. 2007, 129, 5336. (j) Noe¨l, T.; Vandyck, K.; Van der Eycken, J.
Tetrahedron 2007, 63, 12961. (k) Gendrineau, T.; Chuzel, O.; Eijsberg, H.;
Genet, J.-P.; Darses, S. Angew. Chem., Int. Ed. 2008, 47, 7669.
(17) For examples of transition-metal-catalyzed coupling reactions using
organosilanols, see: (a) Hirabayashi, K.; Nishihara, Y.; Mori, A.; Hiyama,
T. Tetrahedron Lett. 1998, 39, 7893. (b) Hirabayashi, K.; Kawashima, J.;
Nishihara, Y.; Mori, A.; Hiyama, T. Org. Lett. 1999, 1, 299. (c) Hirabayashi,
K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.; Hiyama, T. J.
Org. Chem. 2000, 65, 5342. (d) Hirabayashi, K.; Ando, J.; Kawashima, J.;
Nishihara, Y.; Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 1409.
(e) Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am.
Chem. Soc. 2001, 123, 10774. (f) Fujii, T.; Koike, T.; Mori, A.; Osakada,
K. Synlett 2002, 295. (g) Fujii, T.; Koike, T.; Mori, A.; Osakada, K. Synlett
2002, 298. (h) Denmark, S. E.; Neuville, L. Org. Lett. 2000, 2, 565. (i)
Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 3221. (j) Demmark, S. E.;
Sweis, R. F. J. Am. Chem. Soc. 2004, 126, 4876. (k) Denmark, S. E.; Regens,
C. S. Acc. Chem. Res. 2008, 41, 1486. (l) Denmark, S. E. J. Org. Chem.
2009, 74, 2915.
3224
Org. Lett., Vol. 11, No. 15, 2009