T. K. Chakraborty et al. / Tetrahedron Letters 50 (2009) 4350–4353
4353
Raghothama, S.; Shamala, N.; Karle, I. L.; Balaram, P. Chem. Eur. J. 2007, 13, 5917–
5926. and references cited therein.
samples for 3 and 4 is shown in Figure 2. Compounds 3 and 4 show
the nucleation of b-turn with Paa(5)NH–Faa(2)CO and Paa(6)NH–
Faa(3)CO 10-membered hydrogen bonds, respectively. This turn is
further stabilized and transformed into a hairpin by a 13-membered
Paa(5)pyrroleNH–Faa(2)furan‘O’ and Paa(6)pyrroleNH–Faa(3)fura-
n‘O’ H-bonds, respectively, in 3 and 4. This hairpin has continued
further along thelength of the peptide chains consistinginter-strand
b-Phe(1)NH–b-HGly(6)CO and Paa(1)pyrroleNH–Faa(8)furan‘O’
H-bonds. The face-to-face orientation of the aromatic Paa and Faa
residues across the strands is clearly evident in the MD structures.
The aromatic plane centroids are separated by a distance of ꢀ4.4 Å.
Paa(1) and Faa(8) aromatic interactions in 4 have now shown a case
study of the role played by them in forming and stabilizing a long
range secondary structural fold. We suspect that the twisted confor-
mation of the b-hairpin in 4 is also a consequence of these aromatic
interactions.
2. For some recent representative examples, see: (a) Baeza, J. L.; Gerona-Navarro,
G.; Pérez de Vega, M. J.; García-López, M. T.; González-Muñiz, R.; Martín-
Martínez, M. J. Org. Chem. 2008, 73, 1704–1715; (b) Khakshoor, O.; Demeler, B.;
Nowick, J. S. J. Am. Chem. Soc. 2007, 129, 5558–5569; (c) Nowick, J. S. Org.
Biomol. Chem. 2006, 4, 3869–3885; (d) Tashiro, S.; Kobayashi, M.; Fujita, M. J.
Am. Chem. Soc. 2006, 128, 9280–9281; (e) Grison, C.; Coutrot, P.; Gene‘ve, S.;
Didierjean, C.; Marraud, M. J. Org. Chem. 2005, 70, 10753–10764; (f) Kruppa,
M.; Bonauer, C.; Michlova´, V.; König, B. J. Org. Chem. 2005, 70, 5305–5308; (g)
Jeannotte, G.; Lubell, W. D. J. Am. Chem. Soc. 2004, 126, 14334–14335; (h)
Blomberg, D.; Hedenström, M.; Kreye, P.; Sethson, I.; Brickmann, K.; Kihlberg, J.
J. Org. Chem. 2004, 69, 3500–3508; (i) Palomo, C.; Aizpurua, J. M.; Benito, A.;
Miranda, J. I.; Fratila, R. M.; Matute, C.; Domercq, M.; Gago, F.; Martin-
Santamaria, S.; Linden, A. J. Am. Chem. Soc. 2003, 125, 16243–16260; (j) Lee, H.
B.; Pattarawarapan, M.; Roy, S.; Burgess, K. Chem. Commun. 2003, 1674–1675;
(k) Karle, I.; Gopi, H. N.; Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5160–
5164; (l) Souers, A. J.; Ellman, J. A. Tetrahedron 2001, 57, 7431–7448; (m)
Wang, W.; Xiong, C.; Hruby, V. J. Tetrahedron Lett. 2001, 42, 3159–3161; (n)
Cochran, A. G.; Tong, R. T.; Starovasnik, M. A.; Park, E. J.; McDowell, R. S.;
Theaker, J. E.; Skelton, N. J. J. Am. Chem. Soc. 2001, 123, 625–632; (o) Qiu, W.;
Gu, X.; Soloshonok, V. A.; Carducci, M. D.; Hruby, V. J. Tetrahedron Lett. 2001,
42, 145–148; (p) Smith, A. B., III; Wang, W.; Sprengeler, P. A.; Hirschmann, R. J.
Am. Chem. Soc. 2000, 122, 11037–11038; (q) Fisk, J. D.; Powell, D. R.; Gellman,
S. H. J. Am. Chem. Soc. 2000, 122, 5443–5447; (r) Madalengoitia, J. S. J. Am.
Chem. Soc. 2000, 122, 4986–4987.
3. Chakraborty, T. K.; Rao, K. S.; Kiran, M. U.; Jagadeesh, B. Tetrahedron Lett. 2008,
49, 2228–2231.
4. Bhupathy, D.; Conlon, D. A.; Wells, K. M.; Nelson, J. R.; Reider, P. J.; Rossen, K.;
Sager, J. W.; Volante, R. P.; Dorsey, B. D.; Hoffmann, J. M., Jr.; Joseph, S. A.;
McDaniel, S. L. J. Heterocycl. Chem. 1995, 32, 1283–1287.
5. (a) Bodanszky, M.; Bodanszky, A. The Practices of Peptide Synthesis; Springer:
New York, 1984; (b) Grant, G. A. Synthetic Peptides; W.H. Freeman: New York,
1992; (c) Bodanszky, M. Peptide Chemistry; Springer: Berlin, 1993.
6. Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel,
U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913–941.
7. (a) Butterfield, S. M.; Patel, P. R.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 9751–
9755; (b) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 9372–9373; (c)
Waters, M. L. Curr. Opin. Chem. Biol. 2002, 6, 736–741.
In order to facilitate the favored
strands, the individual strands adopt variations in the local confor-
mation. Accordingly as evident by d/ T values the resultant new
p–p interactions across the
D
D
conformations have H-bonding between Paa(1)pyrroleNH and
Faa(8)furan‘O’ which also foregoes the b-Phe(1)NH–b-HGly(6)CO
H-bonding that is observed in 3. The observation of the preferential
conformational changes to favor
p–p interactions over a specific
inter-strand H-bonding is remarkable in the present studies.
Acknowledgments
The authors wish to thank DST, New Delhi for financial support
(SR/S1/OC-01/2007) and CSIR, New Delhi for a research fellowship
(M.U.K.).
8. Zhang, Z. T.; Zhang, X. L. J. Chem. Crystallogr. 2008, 129–133.
9. Mahalakshmi, R.; Raghothama, S.; Balaram, P. J. Am. Chem. Soc. 2006, 128, 1125–
1138.
References and notes
1. (a) Vasudev, P. G.; Chatterjee, S.; Ananda, K.; Shamala, N.; Balaram, P. Angew.
Chem., Int. Ed. 2008, 6430–6432; (b) Rai, R.; Vasudev, P. G.; Ananda, K.;