Financial support from the National Natural Science
Foundation of China (20702015) and Science and Technology
Commission of Shanghai Municipality (07DZ22937),
Shanghai Shuguang Program (07SG27), Shanghai Pujiang
Program (07pj14039) and Shanghai Leading Academic
Discipline Project (B409) are greatly appreciated.
Notes and references
1 A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky, in
Heterocycles in Life and Society, John Wiley & Sons, Chichester,
1997.
Scheme 2 Cationic Pd(II) catalyzes the reaction of 1a and dimethyl
malonate 2f.
2 M. Ash and I. Ash, in Handbook of Flavors and Fragrances,
Synapse Information Resources, Inc, New York, 2006.
3 H.-K. Lee, K.-F. Chan, C.-W. Hui, H.-K. Yim, X.-W. Wu and
H. N. C. Wong, Pure Appl. Chem., 2005, 77, 139.
4 K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis,
VCH, Weinheim, Germany, 1996.
5 K. Urbahns, E. Horvath, J.-P. Stasch and F. Mauler, Bioorg. Med.
´
Chem. Lett., 2003, 13, 2637.
6 (a) B. S. Jensen, D. Strobaek, S. P. Olesen and P. Christophersen,
Curr. Drug Targets, 2001, 2, 401; (b) R. Kohler, H. Wulff,
I. Eichler, M. Kneifel, D. Neumann, A. Knorr, I. Grgic,
D. Kampfe, H. Si, J. Wibawa, R. Real, K. Borner,
S. Brakemeier, H. D. Orzechowski, H. P. Reusch, M. Paul,
K. G. Chandy and J. Hoyer, Circulation, 2003, 108, 1119.
7 For recent reviews, accounts, and highlights dealing with the
synthesis of furans since 2005, see: (a) R. C. D. Brown, Angew.
Chem., Int. Ed., 2005, 44, 850; (b) S. F. Kirsch, Org. Biomol. Chem.,
2006, 4, 2076; (c) D. M. D’Souza and T. J. J. Muller, Chem. Soc.
¨
Rev., 2007, 36, 1095; (d) N. T. Patil and Y. Yamamoto,
ARKIVOC, 2007, (x), 121; (e) G. Balme, D. Bouyssi and
N. Monteiro, Heterocycles, 2007, 73, 87; (f) X. L. Hou, Z. Yang,
K.-S. Y and H. N. C. Wong, in Progress in Heterocyclic Chemistry,
ed. G. W. Gribble and J. A. Joule, Pergamon, Oxford, 2008,
vol. 19, p. 176; (g) S. F. Kirsch, Synthesis, 2008, 3183.
8 For recent literature and patents dealing with the synthesis of
pyrans, see: (a) A. John, P. J. P. Yadav and S. Palaniappan, J. Mol.
Catal. A: Chem., 2006, 248, 121; (b) G. I. Shakibaei, P. Mirzaei and
A. Bazgir, Appl. Catal., A, 2007, 325, 188; (c) B. Das,
P. Thirupathi, I. Mahender, V. S. Reddy and Y. K. Rao, J. Mol.
Catal. A: Chem., 2006, 247, 233; (d) EP 0758648.
9 For selected recent examples, see: (a) S. Kamijo, C. Kanazawa and
Y. Yamamoyo, J. Am. Chem. Soc., 2005, 127, 9260; (b) B. Alcaide,
´
P. Almendros and T. Martınez del Campo, Angew. Chem., Int. Ed.,
2007, 46, 6684; (c) S. Chuprakov and V. Gevorgyan, Org. Lett.,
2007, 9, 4463; (d) A. S. Dudnik, A. W. Sromek, M. Rubina,
J. T. Kim, A. V. Kel’in and V. Gevorgyan, J. Am. Chem. Soc.,
2008, 130, 1440; (e) X. Jiang, X. Ma, Z. Zheng and S. Ma,
Chem.–Eur. J., 2008, 14, 8572.
10 H. Gao and J. Zhang, Adv. Synth. Catal., 2009, 351, 85.
11 (a) X. Yu, H. Ren, Y. Xiao and J. Zhang, Chem.–Eur. J., 2008, 14,
8481; (b) Y. Xiao and J. Zhang, Angew. Chem., Int. Ed., 2008, 47,
1903; (c) Y. Xiao and J. Zhang, Adv. Synth. Catal., 2009, 351, 617.
12 (a) S. Ma and J. Zhang, Angew. Chem., Int. Ed., 2003, 42, 184;
(b) S. Ma, L. Lu and J. Zhang, J. Am. Chem. Soc., 2004, 126, 9645.
13 For furan formation from 2-(1-alkynyl)-2-alken-1-ones catalyzed
by AuCl3, see: T. Yao, X. Zhang and R. C. Larock, J. Am. Chem.
Soc., 2004, 126, 11164.
14 For reviews, see: (a) M. Sodeoka and Y. Hamashima, Pure Appl.
Chem., 2006, 78, 477; (b) M. Sodeoka and Y. Hamashima, Bull.
Chem. Soc. Jpn., 2005, 78, 941; for selected recent examples, see:
(c) Y. Hamashima, N. Sasamoto, D. Hotta, H. Somei,
N. Umebayashi and M. Sodeoka, Angew. Chem., Int. Ed., 2005,
44, 1525–1529; (d) I. Fukuchi, Y. Hamashima and M. Sodeoka,
Adv. Synth. Catal., 2007, 349, 509; (e) N. Umebayashi,
Y. Hamashima and M. Sodeoka, Angew. Chem., Int. Ed., 2008,
47, 4196.
Scheme 3 Proposed catalytic cycle for direct furan syntheses.
catalyzed by 5 mol% cationic Pd(II) at 65 1C. Indeed, the
reaction of 1a with dimethyl malonate 2f under the same
conditions directly affords furan 4af in 92% isolated yield.
On the basis of the above results, a plausible mechanism for
direct synthesis of furan catalyzed by cationic Pd(II) is outlined
in Scheme 3. The initial reaction of cationic Pd(II) catalyst A
with 1,3-dicarbonyl compound 2 gives the palladium enolate
B,15a a strong protic acid (TfOH) and two molecules of water
(2H2O). The water contributes to complete the catalytic
cycle, because no furan is obtained when molecular sieves
(1.5 equiv.) are added to the reaction mixture. The palladium
enolate B could undergo Michael reaction with the aid of
TfOH15b to furnish the addition product C, which upon
hydrolysis affords allenyl ketone 5 and regenerates cationic
Pd(II) catalyst A. Allenyl ketone 5 is ready to undergo
cycloisomerization to final furan 4.
In summary, the chemistry described herein provides an
efficient catalyst-controlled regiodivergent synthesis of furans
and 4H-pyrans from two simple, readily available starting
materials. The regioselective introduction of substituents to
the furans or pyrans arises from the appropriate choice of
2-(1-alkynyl)-2-alken-1-ones or b-keto compounds. Further
studies on the asymmetric version of these reactions are
underway in our laboratory.
15 (a) N. Sasamoto, C. Dubs, Y. Hamashima and M. Sodeoka, J. Am.
Chem. Soc., 2006, 128, 14010; (b) TfOH cooperatively activates the
enone see: Y. Hamashima, D. Hotta, N. Umebayashi, Y. Tsuchiya,
T. Suzuki and M. Sodeoka, Adv. Synth. Catal., 2005, 347, 1576.
ꢀc
This journal is The Royal Society of Chemistry 2009
3596 | Chem. Commun., 2009, 3594–3596