ORGANIC
LETTERS
2009
Vol. 11, No. 15
3318-3321
Zirconium-Mediated Selective Synthesis
of 1,2,4,5-Tetrasubstituted Benzenes
from Two Silyl-Substituted Alkynes and
One Internal Alkyne
Shi Li,† Hongmei Qu,† Lishan Zhou,† Ken-ichiro Kanno,† Qiaoxia Guo,‡
Baojian Shen,‡ and Tamotsu Takahashi*,†
Catalysis Research Center, Hokkaido UniVersity, and SORST, Japan Science and
Technology Agency (JST), Kita-ku, Sapporo 001-0021, Japan, and Petroleum
UniVersity-Hokkaido UniVersity Joint Laboratory, Department of Chemical
Engineering, China UniVersity of Petroleum, Beijing, China
Received May 24, 2009
ABSTRACT
Selective synthesis of 1,2,4,5-tetrasubstituted benzenes was achieved via formation of 2,5-bis(trimethylsilyl)zirconacyclopentadienes from 2
equiv of TMS-substituted alkynes with Cp2ZrBu2 and Cu-mediated formation of 1,4-disilylbenzene by cycloaddition of zirconacyclopentadienes
to disubstituted alkynes. Preparation of 1,2,3,4,9,10-hexasubstituted pentacene and 2,3,6,11-tetrasubstituted naphthacene derivatives were
demonstrated by a homologation or coupling method using tetrasubstituted benzene.
It is well-known that benzene derivatives have been
synthesized by cyclotrimerization of alkynes using transi-
tion-metal complexes.1 One of the major problems of the
reactions is the difficulty in regioselective intermolecular
cyclotrimerization with unsymmetrical alkynes to give
multisubstituted benzene derivatives. As shown in Scheme
1, when two terminal alkynes react with transition metals,
the corresponding metalacycles are obtained as a mixture
of three possible regioisomers.2 The following cyclization
with one internal alkyne affords a mixture of three benzene
derivatives.
stituted benzenes with excellent selectivity in high yields as
shown in Scheme 2.3 These reactions can be applied for
synthesis of hexa-, penta-, and 1,2,3,5-tetrasubstituted ben-
zenes with excellent selectivity and high yields. But there
are no reports for preparation of 1,2,4,5-tetrasubstituted
benzene derivatives via coupling of two terminal alkynes
and one internal alkyne with zirconocene.
(2) For the transition-metal-mediated cyclotrimerization with terminal
alkynes, see: (a) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano,
M. Chem. Eur. J. 2005, 11, 1145. (b) Kirss, R. U.; Ernst, R. D.; Arif, A. M.
J. Organomet. Chem. 2004, 689, 419. (c) Gao, Y.; Puddephatt, R. J. Inorg.
Chim. Acta 2003, 350, 101. (d) Opstal, T.; Verpoort, F. Synlett 2003,
314. (e) Navarro, J.; Sagi, M.; Sola, E.; Lahoz, F. J.; Dobrinovitch, I. T.;
Katho, A.; Joo, F.; Oro, L. A. AdV. Synth. Catal. 2003, 345, 280. (f) Melis,
K.; De Vos, D.; Jacobs, P.; Verpoort, F. J. Organomet. Chem. 2002, 659,
159.
Previously, our group reported the zirconium-mediated
cycloadditions of different alkynes to prepare highly sub-
† Hokkaido University.
‡ China University of Petroleum.
(3) (a) Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.;
Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672. (b) Takahashi, T.; Kotora,
M.; Xi, Z. J. Chem. Soc., Chem. Commun. 1995, 361. (c) Takahashi, T.;
Tsai, F.-Y.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999,
121, 11093. (d) Takahashi, T.; Ishikawa, M.; Huo, S. J. Am. Chem. Soc.
2002, 124, 388.
(1) (a) Schore, N. E. Chem. ReV. 1988, 88, 1081. (b) Schore, N. E. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A.,
Eds.; Pergamon: Tokyo, 1991; Vol. 5, p 1144. (c) Grotjahn, D. B. In
ComprehensiVe Organometallic Chemistry II; Abel, E. W., Stone, F. G. A.,
Wilkinson, G., Eds.; Pergamon: New York, 1995; Vol. 12, p 741.
10.1021/ol901153p CCC: $40.75
Published on Web 07/08/2009
2009 American Chemical Society