In conclusion, we have shown a significant steric effect on
the oxidative decay of FeIII(fla)(salen) on addition of a bulky
carboxylate such as triphenyl acetate, which accelerates the decay
of FeIII(fla)(salen) by as much as two orders of magnitude. This
probably renders a monodentate coordination of the flavonol to
the iron, which is less stable than the bidentate coordination and
the higher electron density on C2 makes electron transfer from the
flavonolate to O2 easier. On adding bulky carboxylates the reaction
proceeds even at room temperature, which is an unprecedented
model. These observations lend strong credence to postulated
mechanism of copper and iron-containing dioxygenases.
Financial support of the Hungarian National Research
Fund (OTKA K67871 and K75783), COST and Budaconsum
Ltd is gratefully acknowledged.
Fig. 3 (a) (A) Visible spectral change for the decay of FeIII(salen)(fla)
ꢀ
in the presence of 10 equiv. Ph3CCO2 in DMF at 40 1C, (B) in the
presence of NBT. (b) Time-dependent conversion of FeIII(fla)(salen)
under the condition described above, monitored at 407 nm.
Notes and references
z Intensity data were measured on a Rigaku R-Axis Rapid single-
where the reduction of the added dye to the blue diformazan took
place (Fig. 3).
crystal diffractometer, using
radiation (l
a graphite-monochromated Mo-Ka
= 0.71075 A) and f scan technique at 293 K.
SHELX-9713 was used for structure solution, and full matrix least
squares refinement on F2.14 CCDC 719842 (Fe(fla)(salen)).w
Crystal data: Compound Fe(fla)(salen): C31H23FeN2O5, Mw
=
559.37, triclinic, space group P 1, a = 10.505(9), b = 12.060(11),
c = 13.489(12) A, a = 63.650(12), b = 67.833(17), g = 85.29(2)1, V =
1411(2) A3, Z = 2, Dc = 1.317 g cmꢀ3, m(Mo-Ka) = 0.576 cmꢀ1
,
12 569 reflections measured, 2536 parameters refined on F2 using 3583
unique reflections to final indices R[F2 4 2s(F2)] = 0.0773, wR =
0.1571, w = 1/[s2(F02) + (0.0709P)2 + 2.7386P], P = (F02 + 2Fc2)/3.
1 E. Wollenweber, in Flavonoids: Advances in Research, ed. J. B. Harborne
and T. J. Mabry, Chapman & Hall, London, New York, 1982.
2 P. Cos, L. Yi, M. Calomme, J. P. Hu, K. Cimanga, B. Poel, L. Pieters,
A. J. Vlietinck and V. J. Berghe, J. Nat. Prod., 1998, 61, 71.
3 T. Oka and F. J. Simpson, Biochem. Biophys. Res. Commun., 1971, 43, 1.
4 H. K. Hund, J. Breuer, F. Lingens, J. Huttermann, R. Kappl and
S. Fetzner, Eur. J. Biochem., 1999, 263, 871.
5 F. Fusetti, K. H. Schroter, R. A. Steiner, P. I. van Noort,
T. Pijning, H. J. Rozeboom, K. H. Kalk, M. R. Egmond and
B. W. Dijkstra, Structure, 2002, 10, 259.
6 R. A. Steiner, K. H. Kalk and B. W. Dijkstra, Proc. Natl. Acad.
Sci. U. S. A., 2002, 99, 16625.
7 L. Bowater, S. A. Fairhurst, V. J. Just and S. Bornemann, FEBS
Lett., 2004, 557, 45; B. M. Barney, M. R. Schaab, R. LoBrutto and
W. Francisco, Protein Expression Purif., 2004, 35, 131.
8 B. Gopal, L. L. Madan, S. F. Betz and A. A. Kossiakoff,
Biochemistry, 2005, 44, 193.
´
9 E. Balogh-Hergovich, J. Kaizer, G. Speier, G. Argay and L. Pa
´
rka
J. Chem. Soc., Dalton Trans., 1999, 3847; E. Balogh-Hergovich,
J. Kaizer, G. Speier, V. Fulop and L. Parkanyi, Inorg. Chem., 1999,
´
nyi,
´
´
´
¨
¨
´
38, 3787; E. Balogh-Hergovich, J. Kaizer, G. Speier, G. Huttner and
´
A. Jacobi, Inorg. Chem., 2000, 39, 4224; E. Balogh-Hergovich,
J. Kaizer, J. Pap, G. Speier, G. Huttner and L. Zsolnai, Eur. J. Inorg.
´
Chem., 2002, 2287; J. Kaizer, E. Balogh-Hergovich, M. Czaun,
T. Csay and G. Speier, Coord. Chem. Rev., 2006, 250, 2222;
J. Kaizer, G. Bara
Chem. Commun., 2007, 5235; L. Barha
J. Org. Chem., 2000, 65, 3449; L. Barha
´
th, J. Pap, G. Speier, M. Giorgi and M. Re
cs, J. Kaizer and G. Speier,
cs, J. Kaizer and G. Speier,
´
glier,
´
´
ð2Þ
J. Mol. Catal. A: Chem., 2001, 172, 117; Y. Feng, C.-Y. Ke, G. Xue
and L. Que, Jr, Chem. Commun., 2009, 50.
On the basis of chemical, spectroscopic and kinetic data it can
10 N. N. Greenwood and T. C. Gibb, Mossbauer Spectroscopy,
Chapman and Hall, London, 1971.
11 L. Jurd and T. X. Geissman, J. Org. Chem., 1956, 21, 1395.
12 L. M. Bellamy, Ultrarot Spectrum und chemische Konstitution,
Dr Dietrich Steinkopf Verlag, Darmstadt, 1966, p. 112.
13 G. M. Sheldrick, SHELXL-97: Program for the Refinement of
¨
be said that bulky carboxylates as coligands dramatically enhance
the reaction rate, which can be explained by two different path-
ways, caused by the formation of more reactive monodentate
flavonolatoiron complexes (eqn (2)). An analogous reaction path-
way, i.e., direct electron–electron transfer from the activated
flavonol to dioxygen without the need for redox cycling of the
metal (b), was suggested for the Ni- and Co-containing flavonol
2,4-dioxygenase.15
Crystal Structures, Univ. of Gottingen, Germany, 1997.
¨
14 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
15 H. Merkens, R. Kappl, R. P. Jakob, F. X. Schmid and S. Fetzner,
Biochemistry, 2008, 47, 12185.
ꢁc
This journal is The Royal Society of Chemistry 2009
3632 | Chem. Commun., 2009, 3630–3632