(around 454 nm) occurs for some of the excited luminescent
cores, before they form excimers or the energy transfer occurs.
As a consequence, both monomeric and excimer emissions are
observed in the emission spectrum of 1 in the SmA phase
(Fig. 3(b), blue line).
C. Tschierske, Chem.–Eur. J., 2001, 7, 2245–2253; (d) C. Damm,
G. Israel, T. Hegmann and C. Tschierske, J. Mater. Chem., 2006,
16, 1808–1816; (e) S. Sivakova and S. J. Rowan, Chem. Commun.,
2003, 2428–2429.
4 (a) M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda,
H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe,
S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager and
H. Takezoe, Adv. Mater., 2004, 16, 779–783; (b) M. Ozaki,
M. Kasano, D. Ganzke, W. Haase and K. Yoshino, Adv. Mater.,
2002, 14, 306–309.
5 (a) Y. Sagara and T. Kato, Angew. Chem., Int. Ed., 2008, 47,
5175–5178; (b) Y. Sagara, S. Yamane, T. Mutai, K. Araki and
T. Kato, Adv. Funct. Mater., DOI: 10.1002/adfm.2008.01726;
(c) J. Kunzelman, M. Kinami, B. R. Crenshaw,
J. D. Protasiewicz and C. Weder, Adv. Mater., 2008, 20,
119–122; (d) V. N. Kozhevnikov, B. Donnio and D. W. Bruce,
Angew. Chem., Int. Ed., 2008, 47, 6286–6289.
6 (a) A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109–122; (b) M. Shirakawa, N. Fujita, T. Tani,
K. Kaneko and S. Shinkai, Chem. Commun., 2005, 4149–4151;
(c) Y. Kamikawa and T. Kato, Langmuir, 2007, 23, 274–278;
Based on the XRD measurements and emission spectra of
compound 1 (Fig. 3 and 4), the induction of the Sm3–SmA
phase transition can be explained as follows. In the Sm3 phase,
nanosegregation between the tetra(ethylene oxide) and
p-(4-trans-pentylcyclohexyl)phenyl moieties of the forklike
side chains is the dominant driving force to induce the smectic
LC behavior, leading to the formation of a monolayer self-
assembled structure (Fig. 5, left). Since the occupied volume of
the forklike side chains increases with increase of temperature,
an interdigitated structure forms to complement the difference
of spatial volume between the forklike side chains and the
luminescent cores. Consequently, the Sm3–SmA phase transi-
tion occurs (Fig. 5, left - right). A dumbbell-shaped molecule
having similar structures to compound 1 was reported to also
show Sm–Sm phase transitions.14 Moreover, the phase transi-
tions are observed for various types of LC compounds.15
Compared to compound 1, compound 2 having a linear
molecular shape shows no Sm–Sm phase transition (see ESIw).
In summary, we have developed an anthracene-based
smectic liquid crystal showing the change of photoluminescent
color from green to light blue on the Sm3–SmA phase transi-
tion. The luminescent color change is ascribed to the decreasing
of the ratio of the excimer emission, which arises from the
change of the self-assembled structures on the Sm3–SmA
phase transition. This liquid crystal could be used as a
stimuli-responsive polarized photoluminescent material if it
is uniaxially aligned.
(d) S. Yagai, T. Seki, T. Karatsu, A. Kitamura and F. Wurthner,
¨
Angew. Chem., Int. Ed., 2008, 47, 3367–3371; (e) A. Kishimura,
T. Yamashita and T. Aida, J. Am. Chem. Soc., 2005, 127, 179–183;
(f) F. Camerel, L. Bonardi, G. Ulrich, L. Charbonniere,
B. Donnio, C. Bourgogne, D. Guillon, P. Retailleau and
R. Ziessel, Chem. Mater., 2006, 18, 5009–5021.
7 (a) T. Mutai, H. Satou and K. Araki, Nat. Mater., 2005, 4,
685–687; (b) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki,
J. Am. Chem. Soc., 2007, 129, 1520–1521; (c) T. Mutai,
H. Tomoda, T. Ohkawa, Y. Yabe and K. Araki, Angew. Chem.,
Int. Ed., 2008, 47, 9522–9524; (d) N. S. S. Kumar, S. Varghese,
N. P. Rath and S. Das, J. Phys. Chem. C, 2008, 112, 8429–8437;
(e) B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, J. Am.
Chem. Soc., 2002, 124, 14410–14415; (f) J. Luo, Z. Xie, J. W.
Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu,
D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740–1741.
8 E. Quesada, M. Ardhammar, B. Norden, M. Miesch,
´
G. Duportail, Y. Bonzi-Coulibaly, Y. Nakatani and
G. Ourisson, Helv. Chim. Acta, 2000, 83, 2464–2476.
´
9 (a) S. Mery, D. Haristoy, J.-F. Nicoud, D. Guillon, H. Monobe
This work was partially supported by Grant-in-Aid for
Creative Scientific Research of ‘‘Invention of Conjugated
Electronic Structures and Novel Functions’’ (no. 16GS0209;
T. K.) from the Japan Society for the Promotion of Science
(JSPS) and The Global COE Program (Chemistry Innovation
through Cooperation of Science and Engineering) (T. K.)
from MEXT. Y. S. is grateful for financial support from the
JSPS Research Fellowship for Young Scientists.
and Y. Shimizu, J. Mater. Chem., 2003, 13, 1622–1630;
(b) S. Norvez, F.-G. Tournilhac, P. Bassoul and P. Herson, Chem.
Mater., 2001, 13, 2552–2561; (c) Y. Takaguchi, T. Tajima,
Y. Yanagimoto, S. Tsuboi, K. Ohta, J. Motoyoshiya and
H. Aoyama, Org. Lett., 2003, 5, 1677–1679; (d) R. Gimenez,
´
M. Pinol and J. L. Serrano, Chem. Mater., 2004, 16, 1377–1383.
10 Y. Iinuma, K. Kishimoto, Y. Sagara, M. Yoshio, T. Mukai,
I. Kobayashi, H. Ohno and T. Kato, Macromolecules, 2007, 40,
4874–4878.
11 (a) I. Aprahamian, T. Yasuda, T. Ikeda, S. Saha, W. R. Dichtel,
K. Isoda, T. Kato and J. F. Stoddart, Angew. Chem., Int. Ed.,
2007, 46, 4675–4679; (b) E. D. Baranoff, J. Voignier, T. Yasuda,
V. Heitz, J.-P. Sauvage and T. Kato, Angew. Chem., Int. Ed., 2007,
Notes and references
1 (a) Special issue on Supramolecular Chemistry and Self-Assembly,
Science, 2002, 295, 2395–2421; (b) I. W. Hamley, Angew. Chem.,
Int. Ed., 2003, 42, 1692–1712; (c) Supramolecular Polymers, ed.
A. Ciferri, Taylor & Francis, London, 2nd edn, 2005.
46, 4680–4683; (c) I. Aprahamian, O. S. Miljanic, W. R. Dichtel,
´
K. Isoda, T. Yasuda, T. Kato and J. F. Stoddart, Bull. Chem. Soc.
Jpn., 2007, 80, 1856–1869.
12 (a) E. A. Chandross, J. Ferguson and E. G. McRae, J. Chem.
Phys., 1966, 45, 3546–3553; (b) N. Mataga, Y. Torihashi and
Y. Ota, Chem. Phys. Lett., 1967, 1, 385–387; (c) P. E. Fielding
and R. C. Jarnagin, J. Chem. Phys., 1967, 47, 247–252; (d) T. Seko,
K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama and J. Tanaka,
Chem. Phys. Lett., 1998, 291, 438–444; (e) J. Ferguson, M. Morita
and M. Puza, Chem. Phys. Lett., 1976, 42, 288–292.
13 (a) T. Cardolaccia, Y. Li and K. S. Schanze, J. Am. Chem. Soc.,
2008, 130, 2535–2545; (b) A. Ajayaghosh, C. Vijayakumar,
V. K. Praveen, S. S. Babu and R. Varghese, J. Am. Chem. Soc.,
2006, 128, 7174–7175; (c) J. F. Hulvat, M. Sofos, K. Tajima and
S. I. Stupp, J. Am. Chem. Soc., 2005, 127, 366–372.
14 A. Yamaguchi, N. Uehara, J. Yamamoto and A. Yoshizawa,
Chem. Mater., 2007, 19, 6445–6450.
15 (a) A. Yamaguchi, I. Nishiyama, J. Yamamoto, H. Yokoyama and
A. Yoshizawa, J. Mater. Chem., 2005, 15, 280–288; (b) V. Molinier,
P. H. J. Kouwer, Y. Queneau, J. Fitremann, G. Mackenzie and
J. W. Goodby, Chem. Commun., 2003, 2860–2861.
2 (a) Handbook of Liquid Crystals, ed. D. Demus, J. W. Goodby,
G. W. Gray, H.-W. Spiess and V. Vill, Wiley-VCH, Weinheim,
1998; (b) Thermotropic Liquid Crystals, ed. G. W. Gray, Wiley,
Chichester, 1987; (c) T. Kato, T. Yasuda, Y. Kamikawa and
M. Yoshio, Chem. Commun., 2009, 729–739; (d) T. Kato,
N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed., 2006,
45, 38–68; (e) C. Tschierske, Chem. Soc. Rev., 2007, 36, 1930–1970;
(f) T. Kato, Science, 2002, 295, 2414–2418; (g) G. H. Mehl, Angew.
Chem., Int. Ed., 2005, 44, 672–673; (h) D. Guillon and
R. Deschenaux, Curr. Opin. Solid State Mater. Sci., 2002, 6,
515–525; (i) A. Yoshizawa, J. Mater. Chem., 2008, 18, 2877–2889;
(j) I. M. Saez and J. W. Goodby, Struct. Bonding, 2008, 128, 1–62;
(k) B. Donnio and D. W. Bruce, Struct. Bonding, 1999, 95, 193–247.
3 (a) T. Hassheider, S. A. Benning, H.-S. Kitzerow, M.-F. Achard
and H. Bock, Angew. Chem., Int. Ed., 2001, 40, 2060–2063;
(b) M. O’Neill and S. M. Kelly, Adv. Mater., 2003, 15,
1135–1146; (c) F. Wurthner, C. Thalacker, S. Diele and
¨
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3597–3599 | 3599