[4] a) A. S. Bommarius, M. Schwarm, K. Stingl, M. Kottenhahn, K.
[5] a) G. M. Rishton, D. M. Retz, P. A. Tempest, J. Novotny, S.
J. H. M. Lange, PCT Int. Appl. WO 2008152086A2, 2008;
M. Nieger, O. Kataeva, S. R. Waldvogel, Synthesis 2007, 773 –
778.
[6] H. Oertling, A. Reckziegel, H. Surburg, H.-J- Bertram, Chem.
Scheme 3. Separation of diastereomeric menthylamines by exploiting
the different solubility of the hydrochlorides.
2076 – 2098; c) A. G. Schultz, M. Macielag, D. E. Podhorez, J. C.
d) N. Welschoff, S. R. Waldvogel, Synthesis 2010, 3596 – 3601.
[8] E. Pinard, S. M. Ceccarelli, H. Stalder, D. Alberati, Bioorg. Med.
[9] M. C. Schopohl, C. Siering, O. Kataeva, S. R. Waldvogel, Angew.
[10] M. Bomkamp, C. Siering, K. Landrock, H. Stephan, R. Frꢂhlich,
[11] R. Orghici, U. Willer, M. Gierszecwska, S. R. Waldvogel, W.
[12] R. Grosser, W. Lange, B. Boehmer, D. Arlt, D. Bielefeldt, Ger.
Offen. DE 40 21 108A1, 1990.
The separation of the epimers 3a and 3b can be
performed by chromatographic means (see the Supporting
Information). This is not practical since it is very time
consuming and costly. After conversion into the correspond-
ing hydrochlorides 16a and 16b, respectively, the different
solubility in tert-butylmethylether can be exploited for a
viable separation (Scheme 3, for details see the Supporting
Information). Starting from a 1:1 ratio of diastereomers, a
35% yield of 16a with a stereochemical purity of 90% is
obtained. By this approach, 16b can be obtained in a highly
isomerically enriched manner. Both hydrochlorides are ideal
derivatives for storage.
In conclusion, we have found a reliable method for the
electrochemical synthesis of menthylamines from menthone
oxime. The cathodic conversion on the mercury pool provides
a selective reduction to (À)-menthylamine. When lead is used
as the cathode material it can be decorated with a small
amount of quaternary ammonium salts, which allows quanti-
tative conversions and prevents corrosion of the toxic cathode
metal. The stereoselectivity can be shifted to the technically
relevant (+)-neomenthylamine by lowering the electrolysis
temperature. In addition, a very practicable way for the
separation of the epimeric menthylamines has been estab-
lished. These unique optically pure amines are highly
accessible by using this stereodivergent process and will find
future applications. Moreover, a novel concept for the
cathodic use of lead has been found which could eliminate
concerns of employing it as an electrode material. This will
open up a new possibility for sustainable reductions by
electrosynthesis.
[13] M. Grosse-Bley, B. Bꢂmer, R. Grosser, D. Arlt, W. Lange, Ger.
Offen. DE 41 20 695A1, 1991.
[14] M. Grosse-Bley, B. Bꢂmer, R. Grosser, W. Lange, F. P. Hoever,
D. Arlt, Ger. Offen. DE 42 21 711A1, 1992.
[15] B. Bꢂmer, R. Grosser, W. Lange, U. Zweering, B. Koehler, W.
Sirges, M. Grosse-Bley, Ger. Offen. DE 195 46 136A1, 1995.
[16] W. Lange, R. Grosser, B. Kꢂhler, S. Michel, U. Zweering, B.
Bꢂmer, Ger. Offen. DE 197 14 343A1, 1997.
[17] R. Angerbauer, R. Grosser, W. Hinsken, J. Rehse, Eur. Pat.
Appl. EP 0 617 019A1, 1994.
[18] J. Looft, T. Vꢂssing, J. Ley, M. Backes, M. Blings, Eur. Pat. Appl.
EP 1 989 944A1, 2008.
[20] M. C. Schopohl, K. Bergander, O. Kataeva, R. Frꢂhlich, S. R.
Waldvogel, Synthesis 2003, 2689 – 2694.
[21] N. D. Zubavera, A. A. Vedenyapin, E. I. Klabunovskii, Russ. J.
Appl. Chem. 2009, 82, 1234 – 1237.
[23] U. Griesbach, D. Zollinger, H. Pꢀtter, C. Comminellis, J. Appl.
[24] S. R. Waldvogel, S. Mentizi, A. Kirste, Top. Curr. Chem. 2011,
DOI: 10.1007/128_2011_125.
[25] N. Komatsu, S. Simizu, T. Sugita, Synth. Commun. 1992, 22, 277 –
279.
Received: February 22, 2011
Published online: May 12, 2011
Keywords: amines · cations · chiral pool · electrochemistry · lead
[27] The compound was provided by BASF SE. The corresponding
bisulfate is formed immediately in the electrolyte.
[28] a) H. Pꢀtter in Organic Electrochemistry, 4th ed. (Eds.: H. Lund,
O. Hammerich), Marcel Dekker, New York, 2001, pp. 1259 –
1308; b) D. Sopher, A. Gieseler, H. Hibst, K. Harth, Ger.
Fariss, R. Johnson, U.S. Patent 3 193 480, 1965; e) M. M. Baizer,
U.S. Patent 3 250 690, 1960.
.
[1] a) M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R.
Eur. Pat. Appl. EP 0 341 475A2, 1989.
[2] J. Seyden-Penne, Chiral Auxiliaries and Ligands in asymmetric
Synthesis, Wiley, New York, 1995.
[3] a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori,
J. Am. Chem. Soc. 1995, 117, 7562 – 7563; b) A. Fujii, S.
[29] Compound 14 is poorly soluble in 2% sulfuric acid in methanol
and, therefore, the concentration might be less than 0.01%.
Angew. Chem. Int. Ed. 2011, 50, 5564 –5567
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5567