pubs.acs.org/joc
Traditional methods for the formation of thioesters in-
Synthesis of Thioesters from Carboxylic Acids via
Acyloxyphosphonium Intermediates with
Benzyltriethylammonium Tetrathiomolybdate as the
Sulfur Transfer Reagent
clude the direct coupling of a thiol with the parent carboxylic
acid and an activating agent,8 the coupling of a thiol with
an acid chloride,9 or reaction of thiols with an acid anhy-
dride.10 Other syntheses of thioesters include the coupling
of thiocarboxylates with arenediazonium salts11 and alkyl
halides.12 These methodologies, however, suffer from limita-
tions such as difficulties encountered in handling thiols and
thioacids and also the availability of starting materials.
However, given the prevalence of the thioester moiety in a
wide range of pharmaceutically active compounds it is
desirable to find novel procedures that provide an efficient
access to such highly useful organic products. In this regard,
we envisaged a novel methodology for the synthesis of highly
functionalized thioesters from readily available carboxylic
acids as starting materials.
Purushothaman Gopinath, Ravindran Sasitha Vidyarini,
and Srinivasan Chandrasekaran*
Department of Organic Chemistry, Indian Institute of Science,
Bangalore 560012, India
Received May 9, 2009
An efficient protocol is reported for the synthesis of
thioesters from carboxylic acids with use of acyloxy
phosphonium salts as intermediates and benzyltriethyl-
ammonium tetrathiomolybdate as the sulfur transfer
reagent
FIGURE 1. Structures of pharmacologically important thioesters.
Herein, we present the synthesis of various substituted
thioesters directly from carboxylic acids using benzyltriethyl-
ammonium tetrathiomolybdate13 ([BnEt3N]2MoS4, 1)
as an efficient sulfur transfer reagent. Aryl carboxylic acids
are first activated by using PPh3 and NBS to form the
corresponding acyloxy phosphonium salts,14 2, which then
on reaction with reagent (1) generate thioaroylate ions
in situ. These thioaroylates on further reaction with various
electrophiles such as alkyl halides/dihalides in the same pot
will lead to the corresponding functionalized thioesters
(Scheme 1).
While attempting the synthesis of dibenzoyl disulfide,
benzoic acid (1 equiv) was treated with PPh3 (1.1 equiv)
and NBS (1.1 equiv) in the presence of benzyltriethylammo-
nium tetrathiomolybdate ([BnEt3N]2MoS4, 1; 1.5 equiv) in
CH2Cl2 as solvent (28 °C, 2 h); we obtained two interes-
ting products, namely methanedithiol dibenzoate 3a and
Thioesters are important synthetic intermediates in org-
anic synthesis and are used for peptide coupling,1 acyl
transfer,2 protecting groups for thiols,3 and also as coupling
partners in organometallic reactions.4 They are also key
intermediates in various biological systems5 and find broad
application in medicinal chemistry6 (Figure 1). From a
synthetic perspective thioesters could be readily transformed
into a more versatile SH group under mild reaction condit-
ions.7
(1) (a) Ficht, S.; Payne, R. J.; Guy, R. T.; Wong, C. H. Eur. J. Org. Chem.
2008, 14, 3620. (b) Hojo, H.; Aimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 111.
(c) Ozawa, C.; Katayama, H.; Hojo, H.; Yuko, N.; Yoshiaki, N. Org. Lett.
2008, 10, 3531. (d) Dawson, P. E.; Muir, T. W.; Lewis, C. I.; Kent, S. B. H.
Science 1994, 266, 776. (e) Dawson, P. E.; Kent, S. B. H. Annu. Rev. Biochem.
2000, 69, 923.
(2) (a) Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95,
4763. (b) Anderson, R.; Henrick, C. A.; Rosenblum, L. D. J. Am. Chem. Soc.
1974, 96, 3654. (c) Sviridov, A. F.; Ermolenko, M. S.; Yashunsky, D. V.;
Kochetkov, N. K. Tetrahedron Lett. 1983, 24, 4355.
(8) (a) McGarvey, G. J.; Williams, M. J.; Hiner, R. N.; Matsubra, Y.; Oh,
T. J. Am. Chem. Soc. 1986, 108, 4943. (b) McCoy, J. G.; Johnson, H. D.;
Singh, S.; Bingman, C. A.; Lei, I. K.; Thorson, J. S.; Phillips, G. N. Protein
Struct. Funct. Biol. 2009, 74, 50.
(9) Zeiba, A.; Suwinska, K. Heterocycles 2008, 75, 2649.
(10) Peterson, M. J.; Marchal, C.; Loughlin, W. A.; Jenkins, I. D.; Healy,
P. C.; Almesaker, A. Tetrahedron 2006, 63, 1395.
(11) Petrillo, G.; Novi, M.; Garbarino, G.; Filiberti, M. Tetrahedron
1989, 45, 7411.
(12) Yamamoto, H.; Fukazu, N.; Tanaka, M.; Kobayashi, S. Jpn. Kokai
Tokkyo Koho 2004, 9 pp.
(13) Prabhu, K. R.; Devan, N.; Chandrasekaran, S. Synlett 2002, 1762.
(14) (a) Froyen, P. Phosphorus, Sulfur Silicon 1994, 89, 57. (b) Froyen, P.
Phosphorus, Sulfur Silicon 1994, 91, 145. (c) Froyen, P. Synth. Commun. 1995,
25, 959. (d) Sucheta, K.; Reddy, G. S. R.; Ravi, D.; Rama Rao, N.
Tetrahedron Lett. 1994, 25, 4415.
(3) Christian, F.; Bjorn, S.; Andreas, T. Eur. J. Org. Chem. 2007, 6, 1013.
(4) (a) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc.
2007, 129, 15734. (b) Prokopcova, H.; Pisani, L.; Kappe, C. O. Synlett 2007,
43. (c) Morita, A.; Kuwahara, S. Org. Lett. 2004, 8, 1613. (d) Lengar, A.;
Kappe, C. O. Org. Lett. 2004, 6, 771. (e) Alphonse, F. A.; Suzenet, F.;
Keromnes, A.; Lebert, B.; Guillaumet, G. Synlett 2002, 3, 447.
(5) Bjorn, H. T.; Ben, F. L.; Adriaan, M. J. Chem. Commun. 2007, 5, 489.
(6) (a) Metzner, P.; Thuillier, A. Sulfur Reagents in Organic Synthesis;
Academic Press: New York, 1994. (b) Nudelman, A. The Chemistry of Optically
Active Sulfur Compounds; Gordon and Breach: New York, 1984. (c) Chatgilialoglu,
C.; Asmus, K. D. Sulfur-Centered Reactive Intermediates in Chemistry and
Biology; Springer: New York, 1991
(7) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis;
John Wiley & Sons: New York, 1999; p 454.
DOI: 10.1021/jo9009694
r
Published on Web 07/20/2009
J. Org. Chem. 2009, 74, 6291–6294 6291
2009 American Chemical Society