F. Troisi et al. / Tetrahedron Letters 50 (2009) 4416–4419
4419
pp 1369–1454; (f) Calixarenes in the Nanoworld; Vicens, J., Harrowfield, J., Eds.;
Springer: Dordrecht, 2007.
2. Gutsche, C. D. Calixarenes, an Introduction; Royal Society of Chemistry:
Cambridge, UK, 2008. pp 25–26 and following chapters.
that this kind of O–C bond formation has been already observed in
the chemistry of aryloxenium cations.19
In a second series of experiments we decided to examine the
additional group of phenolic nucleophiles 2f–i (Table 1). Thus, it
was evidenced that phenols para-substituted with an alkyl (2f
and 2h), alkoxy (2g), and hydroxy (2i) group only gave CÀO cou-
pled p-aryloxy derivatives 3f–i in 20–35% yield (Table 1). In these
instances the nucleophilicity of OH group appears to be higher
with respect to that of these aromatic rings which are less acti-
vated toward electrophilic aromatic substitution. A border line sit-
uation was obtained by the simple phenol 2j which afforded both
CÀO coupled para-substituted calix[4]arene 3j (20% yield) and
CÀC coupled meta-substituted derivative 4j (10% yield; Table 1).
Thus, it can be generalized that the p-bromodienone route with
less activated substrates bearing a single OH group mainly affords
CÀO coupled, para-substituted derivatives through a nucleophilic
attack of phenolic oxygen atom to aryloxenium cation I, in analogy
with what observed with aliphatic alcohols.8 Catechol 2k afforded
a second example of CÀC coupled para-substituted derivative 3k
albeit in very low yield (5%; Table 1). Finally, pyrogallol 2l gave
mainly two isomeric CÀC coupled meta-substituted calix[4]arenes
4l and 4l’ (in 20% and 10% yield, respectively; Table 1) besides to a
small amount (5%) of para-substituted derivatives 3l CÀO coupled
at the central OH group. The formation of the latter derivative
could be ascribed to the higher acidity of the central OH group
due to H-bonding stabilization by the ortho ones.
In conclusion, we have demonstrated that the p-bromodienone
route, previously applied to alcohols and carboxylates, can be ex-
tended to activated aromaticsubstrates. Depending onthe reactivity
of the substrate, aromatic moieties can be introduced at the para- or
meta-position of calixarene aromatic ring, mainly through CÀO or
CÀC coupling, respectively. In a few instances, examples of CÀC cou-
pling at the para-position and OÀC coupling at thecalixarene oxygen
atom were also observed. The p-bromodienone route with highly
activated aromatic substrates provides a practicable method for
the synthesis of meta-substituted inherently chiral calix[4]arene
derivatives, which can find interesting applications in enantiodis-
criminationprocesses. In addition, theintroductionof aromaticmoi-
eties at the calixarene exo-rim represents a novel procedure to
obtain calix[4]arenes with enlarged aromatic central cavity, which
could show enhanced recognition properties with respect to the na-
tive macrocycle. The potentiality of p-bromodienone route can be
further expanded by using other N-, S-, and C-nucleophiles. Work
along these lines is currently underway in our laboratory.
3. Böhmer, V. In Modern Supramolecular Chemistry Strategies for Macrocycle
Synthesis; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley: Weinheim,
2008. Chapter 5.
4. The most common electrophilic aromatic substitutions include sulfonation,4a
acylation,4b nitration,4c halogenation,4d formylation,4e and chlorosulfonation.4f
For general reviews see Ref. 1, while for representative or recent examples, see:
(a) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O. J. Am. Chem. Soc.
1987, 109, 6371–6376; (b) Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986, 42, 1633–
1640; (c) Verboom, W.; Durie, A.; Egberink, R. J. M.; Asfari, Z.; Reinhoudt, D. N. J.
Org. Chem. 1992, 57, 1313–1316; (d) Gutsche, C. D.; Pagoria, P. F. J. Org. Chem.
1985, 50, 5795–5802; (e) Arduini, A.; Fanni, S.; Manfredi, G.; Pochini, A.;
Ungaro, R.; Sicuri, A. R.; Ugozzoli, F. J. Org. Chem. 1995, 60, 1448–1453; (f)
Casnati, A.; Ting, Y.; Berti, D.; Fabbi, M.; Pochini, A.; Ungaro, R.; Sciotto, D.;
Lombardo, G. G. Tetrahedron 1993, 49, 9815–9822.
5. Gutsche, C. D.; Levine, J. J. Am. Chem. Soc. 1982, 104, 2652–2653.
6. Gutsche, C. D.; Nam, K. C. J. Am. Chem. Soc. 1988, 110, 6153–6162.
7. Almi, M.; Arduini, A.; Casnati, A.; Pochini, A.; Ungaro, R. Tetrahedron 1989, 45,
2177–2182.
8. Troisi, F.; Pierro, T.; Gaeta, C.; Neri, P. Org. Lett. 2009, 11, 697–700.
9. Thulasi, S.; Bhagavathy, G. V.; Eliyan, J.; Varma, L. R. Tetrahedron Lett. 2009, 50,
770–772.
10. For a similar study on 4-bromo-2,6-di-tert-butylcyclohexa-2,5-dienone, see:
Omura, K. J. Org. Chem. 1998, 63, 10031–10034.
11. (a) Taylor, W. L.; Battersby, A. R. Oxidative Coupling of Phenols; Marcel Dekker:
New York, 1967; (b) Swenton, J. S.; Callinan, A.; Chen, Y.; Rohde, J. L.; Kerns, M.
L.; Morrow, G. L. J. Org. Chem. 1996, 61, 1267–1274; (c) Hegarty, A. F.; Keogh, J.
P. J. Chem. Soc., Perkin Trans. 2 2001, 758–762; (d) Eickhoff, H.; Jung, G.; Rieker,
A. Tetrahedron 2001, 57, 353–364; (e) Glover, S. A.; Novak, M. Can. J. Chem.
2005, 83, 1372–1381; (f) Wang, Y.-T.; Wang, J.; Platz, M. S.; Novak, M. J. Am.
Chem. Soc. 2007, 129, 14566–14567; (g) Williams, L. L.; Webster, R. D. J. Am.
Chem. Soc. 2004, 126, 12441–12450; (h) Lee, S. B.; Lin, C. Y.; Gill, P. M.; Webster,
R. D. J. Org. Chem. 2005, 70, 10466–10473; (i) Peng, H. M.; Webster, R. D. J. Org.
Chem. 2008, 73, 2169–2175.
12. Gaeta, C.; Martino, M.; Neri, P. Tetrahedron Lett. 2003, 44, 9155–9159.
13. See Supplementary data for additional details.
14. In addition to 3a and 4a, tripropoxy-p-tert-butylcalix[4]arene and
tripropoxycalix[4]monoquinone were also isolated in 35% and 5% yield,
respectively.
15. It is well known that 2,5-cyclohexadienone derivatives with two groups in
position 4 undergo 1,2-migration of one of these groups (the dienone–phenol
rearrangement) to afford phenolic compounds. For a review, see: (a) Miller, B.
Acc. Chem. Res. 1975, 8, 245–256; (b) Lukyanov, S. M.; Koblik, A. V. In The
Chemistry of Phenols; Rappoport, Z., Ed.; Wiley: Chichester, UK, 2003; pp 806–
816. Chapter 11, and references therein; For more recent examples, see: (c)
Chen, Y.; Reymond, J.-L.; Lerner, R. A. Angew. Chem., Int. Ed. Engl. 1994, 33,
1694–1696; (d) Frimer, A. A.; Marks, V.; Sprecher, M.; Gilinsky-Sharon, P. J. Org.
Chem. 1994, 59, 1831–1834; (e) Sauer, A. M.; Crowe, W. E.; Henderson, G.;
Laine, R. A. Tetrahedron Lett. 2007, 48, 6590–6593.
16. (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: Chichester, UK, 1992,
pp 1058–1061; (b) Marx, J. N.; Hahn, Y.-S. P. J. Org. Chem. 1988, 53, 2866–2868;
(c) Liang, H.; Ciufolini, M. A. J. Org. Chem. 2008, 73, 4299–4301.
17. Notwithstanding the special interest for the inherent chirality of meta-
substituted calix[4]arenes, functionalizations at the meta-position are
relatively uncommon. For some representative examples, see: (a) Reddy, P.
A.; Gutsche, C. D. J. Org. Chem. 1993, 58, 3245–3251; (b) Verboom, W.;
Bodewes, P. J.; Essen, G. V.; Timmerman, P.; Hummer, G. J. V.; Harkema, S.;
Reinhoudt, D. N. Tetrahedron 1995, 51, 499–512; (c) Mascal, M.; Warmuth, R.;
Naven, R. T.; Edwards, R. A.; Hursthouse, M. B.; Hibbs, D. E. J. Chem. Soc., Perkin
Trans. 1 1999, 3435–3441; (d) Barton, O. G.; Neumann, B.; Stammler, H.-G.;
Mattay, J. Org. Biomol. Chem. 2008, 6, 104–111.
18. For very interesting examples of non-chromatographic resolution of inherently
chiral meta-substituted calixarenes, see: (a) Xu, Z.-X.; Zhang, C.; Zheng, Q.-Y.;
Chen, C.-F.; Huang, Z.-T. Org. Lett. 2007, 9, 4447–4450; (b) Xu, Z.-X.; Zhang, C.;
Yang, Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2008, 10, 477–479.
19. (a) Abramovitch, R. A.; Inbasekaran, M.; Kato, S. J. Am. Chem. Soc. 1973, 95,
5428–5430; (b) Abramovitch, R. A.; Inbasekaran, M. N. J. Chem. Soc., Chem.
Commun. 1978, 149–150; (c) Abramovitch, R. A.; Bartnik, R.; Cooper, M.;
Dassanayake, N. L.; Hwang, H. Y.; Inbasekaran, M. N.; Rusek, G. J. Org. Chem.
1982, 47, 4817–4818; (d) Abramovitch, R. A.; Alvernhe, G.; Bartnik, R.;
Dassanayake, N. L.; Inbasekaran, M. N.; Kato, S. J. Am. Chem. Soc. 1981, 103,
4558–4565.
Supplementary data
Supplementary data (synthetic details, 1D and 2D 1H and 13C
NMR data) associated with this article can be found, in the online
References and notes
1. For comprehensive reviews on calixarenes see: (a) Böhmer, V. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 713–745; (b) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97,
1713–1734; (c) Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry:
Cambridge, 1998; (d) Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J.,
Vicens, J., Eds.; Kluwer: Dordrecht, 2001; (e) Böhmer, V. In The Chemistry
of Phenols; Rappoport, Z., Ed.; Wiley: Chichester, UK, 2003; Chapter 19,