One-Pot Synthesis of Highly Substituted Allenylidene Derivatives
COMMUNICATIONS
Ma, N. Jiao, Angew. Chem. 2002, 114, 4931; Angew.
Chem. Int. Ed. 2002, 41, 4737.
being studied in our research group, and will be re-
ported in due course.
[3] a) B. M. Trost, Angew. Chem. 1986, 98, 1; Angew.
Chem. Int. Ed. Engl. 1986, 25, 1; b) C. Thebtaranonth,
Y. Thebtaranonth, Tetrahedron 1990, 46, 1385; c) L. F.
Tietze, U. Beifuss, Angew. Chem. 1993, 105, 137;
Angew. Chem. Int. Ed. Engl. 1993, 32, 131; d) M. A.
Amputch, R. Matamoros, R. D. Little, Tetrahedron
1994, 50, 5591; e) D. Caine, Tetrahedron 2001, 57, 2643;
f) G. Balme, D. Bouyssi, N. Monteiro, Topics in Organ-
ometallic Chemistry, Springer Verlag, Berlin, Heidel-
berg, 2006, Vol. 19, p 115.
Experimental Section
Typical Experimental Procedure for Tandem Michael
Addition–Cyclization Reactions (3a)
To a solution of diethyl 2-{2-[3-(ethoxycarbonyloxy)prop-1-
ynyl]benzylidene}malonate 1a (75.8 mg, 0.20 mmol) in DMF
(2.0 mL) was added Cs2CO3 (197.6 mg, 0.60 mmol). After
[4] a) G. Balme, D. Bouyssi, N. Coia, Eur. J. Org. Chem.
2007, 19, 3158; b) D. Bouyssi, N. Monteiro, G. Balme,
Tetrahedron Lett. 1999, 40, 1297.
the mixture had been stirred for 10 min, PdACTHUNRTGNEUNG(PPh3)4 (22.5 mg,
0.01 mmol, 5 mol%) and the corresponding amine
(0.40 mmol) were added under the argon at 258C. When the
reaction was complete as monitored by TLC, the reaction
mixture was quenched with a saturated aqueous solution of
ammonium chloride, and the mixture was extracted with
EtOAc (3ꢂ15 mL). The combined organic extracts were
washed with water and saturated brine, dried over Na2SO4
and filtered. Solvents were evaporated under reduced pres-
sure. The residue was purified by chromatography on silica
gel using 80:1 hexanes/EtOAc to afford the corresponding
[5] For some of the most recent typical reactions about al-
lenes, see: a) S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc.
2005, 127, 7320; b) J. D. Sieber, J. P. Morken, J. Am.
Chem. Soc. 2006, 128, 74; c) P. H. Lee, K. Lee, Y. Kang,
J. Am. Chem. Soc. 2006, 128, 1139; d) P. L. Lalonde,
B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc.
2007, 129, 2452; e) H.-T. Chang, T. T. Jayanth, C.-H.
Cheng, J. Am. Chem. Soc. 2007, 129, 4166; f) A. R.
Banaag, M. A. Tius, J. Am. Chem. Soc. 2007, 129, 5328;
g) A. S. K. Hashmi, Angew. Chem. 2000, 112, 3737;
Angew. Chem. Int. Ed. 2000, 39, 3590; h) A. S. K.
Hashmi, in: Modern Allene Chemistry, (Eds.: A. S. K.
Hashmi, N. Krause), Wiley-VCH, Weinheim, 2004,
p 877.
indene 3a. The reaction catalyzed by Ni3ACHTNUTRGNEU(GN PO4)2·8H2O was
carried ou in the same way except that the mixture was
stirred at 458C in air.
[6] H.-P. Bi, X.-Y. Liu, F.-R. Gou, L.-N. Guo, X.-H. Duan,
Y.-M. Liang, Org. Lett. 2007, 9, 3527.
Acknowledgements
[7] K. Gao, J. Wu, Org. Lett. 2008, 10, 2251.
We thank the NSF (NSF-20621091, NSF-20672049, NSF-
20732002) and China Scholarship Council for financial sup-
port.
[8] a) L.-N. Guo, X.-H. Duan, H.-P. Bi, X.-Y. Liu, Y.-M.
Liang, J. Org. Chem. 2006, 71, 3325; b) X.-H. Duan, L.-
N. Guo, H.-P. Bi, X.-Y. Liu, Y.-M. Liang, Org. Lett.
2006, 8, 3053; c) X.-H. Duan, L.-N. Guo, H.-P. Bi, X.-Y.
Liu, Y.-M. Liang, Org. Lett. 2006, 8, 5777; d) L.-N.
Guo, X.-H. Duan, H.-P. Bi, X.-Y. Liu, Y.-M. Liang, J.
Org. Chem. 2007, 72, 1538.
References
[9] See Supporting Information for details.
[10] F.-R. Gou, H.-P. Bi, L.-N. Guo, Z.-H. Guan, X.-Y. Liu,
[1] For reviews of tandem reactions, see: a) T.-L. Ho,
Tandem Organic Reactions, Wiley-Interscience, New
York, 1992; b) T.-L. Ho, Tactics of Organic Synthesis,
Wiley-Interscience, New York, 1994, p 79; c) L. F.
Tietze, F. Haunert, in: Stimulating Concepts in Chemis-
try, (Eds.: F. Vçgtle, J. F. Stoddart, M. Shibasaki),
Wiley-VCH, Weinheim, 2000, p 39; d) T. J. J. Mꢃller,
Topics in Organometallic Chemistry, Springer-Verlag,
Berlin, Heidelberg, 2006, Vol. 19, p 149.
[2] For recent selected examples of metal-promoted
tandem reactions, see: a) K.-T. Yip, M. Yang, K.-L.
Law, N.-Y. Zhu, D. Yang, J. Am. Chem. Soc. 2006, 128,
3130; b) X. Wei, J. C. Lorenz, S. Kapadia, A. Saha, N.
Haddad, C. A. Busacca, C. H. Senanayake, J. Org.
Chem. 2007, 72, 4250; c) H. Hamaguchi, S. Kosaka, H.
Ohno, N. Fujii, T. Tanaka, Chem. Eur. J. 2007, 13, 1692;
d) H. J. Bae, B. Baskar, S. E. An, J. Y. Cheong, D. T.
Thangadurai, I. C. Hwang, Y. H. Rhee, Angew. Chem.
2008, 120, 2295; Angew. Chem. Int. Ed. 2008, 47, 2263;
e) X.-Y. Liu, C.-M. Che, Angew. Chem. 2008, 120, 3865;
Angew. Chem. Int. Ed. 2008, 47, 3805; f) H. Ohno, K.
Miyamura, T. Mizutani, Y. Kadoh, Y. Takeoka, H. Ha-
maguchi, T. Tanaka, Chem. Eur. J. 2005, 11, 3728; g) S.
Y.-M. Liang, J. Org. Chem. 2008, 73, 3837.
[11] The molecular structure of the corresponding product
3a was determined by X-ray crystallography (Figure 1).
X-ray data for compound 3a: C23H23NO4, MW=377.42,
T=274 (2) K, l=0.71073 ꢄ, monoclinic space group,
triclinic, P-1, a=9.369 (12) ꢄ, b=10.308 (13) ꢄ, c=
10.606 (13) ꢄ, a=94.23(2)8, b=95.71(2)8, g=94.83(2)8,
V=1012(2) ꢄ3,
0.085 mmÀ1,
0.24 mm3, independent reflections 3639 [R
ACHTUNGTRENNUNG
Z=2,
(000)=400, crystal size 0.31ꢂ0.27ꢂ
(int)=
1cald =1.238 mgmÀ3,
m=
FACHTUNGTRENNUG
0.0223], reflections collected 4753, refinement method,
full-matrix least-squares on F2, goodness-of-fit on F2
1.013, final R indices [I> 2a(I)] R1 =0.0540, wR2 =
0.1361, R indices (all date) R1 =0.0986, wR2 =0.1747,
largest diff. peak and hole 0.231 and À0.216 eꢄÀ3.
CCDC 702185 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic
[12] a) C. F. Nguefack, P. Lhoste, D. Sinou, Synlett 1996,
553; b) M. Yoshida, H. Nemoto, M. Ihara, Tetrahedron
Adv. Synth. Catal. 2009, 351, 141 – 146
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
145