ORGANIC
LETTERS
2011
Vol. 13, No. 15
3940–3943
Synthesis of a Pladienolide B
Analogue with the Fully
Functionalized Core Structure
†
†
‡
Sarah Muller, Timo Mayer, Florenz Sasse, and Martin E. Maier*
,†
€
€
€
Institut fu€r Organische Chemie, Universitat Tubingen, Auf der Morgenstelle 18, 72076
Tu€bingen, Germany, and Abteilung Chemische Biologie Helmholtz-Zentrum fu€r
Infektionsforschung, Inhoffenstrasse 7, 38124 Braunschweig, Germany
Received May 31, 2011
ABSTRACT
Starting from (R)-(ꢀ)-linalool (6), terminus differentiation and chain extension via aldol type reactions led to ketophosphonate 16 (C1ꢀC8 building
block). In a HornerꢀWadsworthꢀEmmons reaction, 16 reacted with aldehyde 22, which contained the vicinal anti-MeꢀOH pattern and a vinyl
iodide function, to provide the C1ꢀC13 part of pladienolide B. After Shiina macrolactonization, reduction of the enone 26 gave the core structure
27. A Stille cross-coupling of vinyl iodide 27 with tributylphenylstannane eventually furnished analogue 30.
A living cell can be considered as a very complex factory.
While there might be many menial tasks, most of the
cellular processes are highly complex. Disfunctions in
key processes cause diseases, like cancer. In deciphering
biological processes, natural products are still an impor-
tant tool and the discovery of natural products often
identifies new biological targets to treat diseases. Illustra-
tive examples in this regard are the pladienolides and
FR901464 (Figure 1). Appropriately labeled and modified
derivatives of pladienolide B1ꢀ3 (1) and FR9014644,5 (4)
showed that the strong antitumor activities ofthese natural
products are connected with interference of the splicing
process.6ꢀ8 Protein production in eukaryotic cells requires
removal of introns from the initial transcript, the pre-
mRNA, by the spliceosome before the mature mRNA is
released to the cytosol. The splicing process involves well
organized binding and release of several small nuclear
ribonucleoproteins (snRNPs), like U1, U2, U4/U6ꢀU5
†
€
Institut f€ur Organische Chemie, Universitat T€ubingen.
‡ Abteilung Chemische Biologie Helmholtz-Zentrum f€ur Infektionsforschung.
(1) (a) Sakai, T.; Sameshima, T.; Matsufuji, M.; Kawamura, N.;
Dobashi, K.; Mizui, Y. J. Antibiot. 2004, 57, 173–179. (b) Sakai, T.; Asai,
N.; Okuda, A.; Kawamura, N.; Mizui, Y. J. Antibiot. 2004, 57, 180–187.
(2) Stereochemistry: Asai, N.; Kotake, Y.; Niijima, J.; Fukuda, Y.;
Uehara, T.; Sakai, T. J. Antibiot. 2007, 60, 364–369.
(3) Biological activity: Mizui, Y.; Sakai, T.; Iwata, M.; Uenaka, T.;
Okamoto, K.; Shimizu, H.; Yamori, T.; Yoshimatsu, K.; Asada, M.
J. Antibiot. 2004, 57, 188–196.
(4) Isolation and structure: (a) Nakajima, H.; Sato, B.; Fujita, T.;
Takase, S.; Terano, H.; Okuhara, M. J. Antibiot. 1996, 49, 1196–1203.
(b) Nakajima, H.; Hori, Y.; Terano, H.; Okuhara, M.; Manda, T.;
Matsumoto, S.; Shimomura, K. J. Antibiot. 1996, 49, 1204–1211.
(c) Nakajima, H.; Takase, S.; Terano, H.; Tanaka, H. J. Antibiot.
1997, 50, 96–99.
(5) For recent total syntheses and synthetic studies, see: (a) Thompson,
C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123,
9974–9983. (b) Motoyoshi, H.; Horigome, M.; Ishigami, K.; Yoshida,
T.; Horinouchi, S.; Yoshida, M.; Watanabe, H.; Kitahara, T. Biosci.
Biotechnol. Biochem. 2004, 68, 2178–2182. (c) Motoyoshi, H.; Horigome,
M.; Watanabe, H.; Kitahara, T. Tetrahedron 2006, 62, 1378–1389.
(d) Albert, B. J.; Sivaramakrishnan, A.; Naka, T.; Czaicki, N. L.;
Koide, K. J. Am. Chem. Soc. 2007, 129, 2648–2659. (e) Osman, S.;
Albert, B. J.; Wang, Y.; Li, M.; Czaicki, N. L.; Koide, K. Chem.;Eur. J.
2011, 17, 895–904.
(6) Pladienolide study: Kotake, Y.; Sagane, K.; Owa, T.; Mimori-
Kiyosue, Y.; Shimizu, H.; Uesugi, M.; Ishihama, Y.; Iwata, M.; Mizui,
Y. Nat. Chem. Biol. 2007, 3, 570–575.
(7) FR901464 (spliceostatin A) study: Kaida, D.; Motoyoshi, H.;
Tashiro, E.; Nojima, T.; Hagiwara, M.; Ishigami, K.; Watanabe, H.;
Kitahara, T.; Yoshida, T.; Nakajima, H.; Tani, T.; Horinouchi, S.;
Yoshida, M. Nat. Chem. Biol. 2007, 3, 576–583.
(8) For a summary, see: Rymond, B. Nat. Chem. Biol. 2007, 3, 533–
535.
(9) (a) van Alphen, R. J.; Wiemer, E. A. C.; Burger, H.; Eskens, F. A.
L. M. Br. J. Cancer 2009, 100, 228–232. (b) House, A. E.; Lynch, K. W.
J. Biol. Chem. 2008, 283, 1217–1221.
r
10.1021/ol201464m
Published on Web 06/27/2011
2011 American Chemical Society