Organometallics 2009, 28, 4613–4616 4613
DOI: 10.1021/om900285e
C-Substituted Bis(diphenylphosphino)methane-Type Ligands for
Chromium-Catalyzed Selective Ethylene Oligomerization Reactions
Arminderjit Dulai,† Henriette de Bod,‡ Martin J. Hanton,§ David M. Smith,§
Stephen Downing,§ Stephen M. Mansell,† and Duncan F. Wass*,†
†School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K., ‡R&D Division, Sasol
Technology (Pty) Ltd., 1 Klasie Havenga Road, Sasolburg 1947, South Africa, and §Sasol Technology U.K.
Ltd., Purdie Building, North Haugh, St. Andrews KY16 9ST, U.K.
Received April 15, 2009
Summary: Ligand backbone alkylation of the complex
[Cr(CO)4(dppm)] (dppm = bis(diphenylphosphino)methane)
with alkyl iodides yields the C-substituted dppm ligand com-
plexes [Cr(CO)4{Ph2PCH(R)PPh2}] (R = methyl, n-hexyl,
benzyl). Activation of these complexes via one-electron oxida-
tion with Ag[(Al(OC4F9)4] and CO removal with triethylalu-
minium, or (in the case of R=methyl) by in situ treatment of
the free ligand with a chromium salt and modified methyl
alumoxane (MMAO), leads to catalysts showing some selec-
tivity for ethylene trimerization and tetramerization. NMR
spectroscopic studies of the parent dppm or [Cr(CO)4(dppm)]
compounds suggest that ligand deprotonation and decom-
plexation may be the cause of the surprisingly poor catalytic
performance of these specific derivatives.
demonstrated that relatively minor changes to ligand struc-
ture and reaction conditions can lead to ethene tetrameriza-
tion rather than trimerization.4 More recently, a wider
variety of carbon-bridged diphosphine ligands has been
investigated for these reactions, with 1,2-bis(diphenylphos-
phino)benzene, in particular, showing promise.5 Sur-
prisingly, bis(diphenylphosphino)methane ligands, despite
being very similar to the highly active and selective
N,N-bis(diphenylphosphino)amine in terms of bite angle,
steric constraints, and donor strength,6 proved to be very
poor ligands for catalysis. Indeed, the direct analogue dppm
showed no evidence of selective oligomerization, producing
only a Schulz-Flory distribution of oligomers.5 This result is
in line with our earlier findings for P-anisyl-substituted
derivatives.2 It was postulated that the unsubstituted nature
of the backbone made the ligand susceptible to deprotona-
tion during catalysis, leading to the observed disappointing
results. With this hypotheses in mind, and to access ligands
sterically equivalent to the successful N-alkyl-substituted N,
N-bis(diphenylphosphino)amines, it was reasoned that li-
gands of the type Ph2PCH(R)PPh2 (R = alkyl) may give
improved performance. The synthesis and catalytic screen-
ing of such complexes are reported here.
Introduction
In recent years, catalysts have emerged that are capable of
the selective trimerization of ethene to 1-hexene via a dis-
tinctive metallacyclic mechanism.1 In 2002, we reported
catalysts based on chromium complexes of ligands of the
type Ar2PN(Me)PAr2 (Ar=ortho-methoxy-substituted aryl
group) with productivity figures over an order of magnitude
better than previous systems.2 This unprecedented perfor-
mance led to interest both from a mechanistic viewpoint and
in extending the range of substrates used in these reactions;3
however, the most significant subsequent development
has been the report from Bollmann and co-workers that
Results and Discussion
Shaw and co-workers reported the synthesis of backbone-
substituted dppm ligands via deprotonation and alkylation
of various simple dppm complexes, in which complexation
acts to protect phosphorus from substitution.7 Of particular
interest for this study is the report of chromium carbonyl
complexes, such species being useful precatalysts that can be
activated via one-electron oxidation.8 Following Shaw’s
method, complexes 2-4 were synthesized in 38-63% yield
from [Cr(CO4)(dppm)] 1 (Scheme 1). IR spectroscopy re-
veals the carbonyl stretching bands for these complexes to be
very similar (1877, 1894, 1917, 2007 cm-1 for 2, 1876, 1892,
*Corresponding author. E-mail: duncan.wass@bristol.ac.uk.
(1) (a) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H.
J. Organomet. Chem. 2004, 689, 3641. (b) Wass, D. F. Dalton Trans. 2007,
816.
(2) Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.;
Wass, D. F. Chem. Commun. 2002, 858.
(3) (a) Agapie, T.; Schofer, S. J.; Labinger, J. A.; Bercaw, J. E. J. Am.
Chem. Soc. 2004, 126, 1304. (b) Blann, K.; Bollmann, A.; Dixon, J. T.; Hess,
F. M.; Killian, E.; Maumela, H; Morgan, D. H.; Neveling, A.; Otto, S.;
Overett, M. J. Chem. Commun. 2005, 620. (c) Overett, M. J.; Blann, K.;
Bollmann, A.; Dixon, J. T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D. H.;
Neveling, A.; Otto, S. Chem. Commun. 2005, 622. (d) Bowen, L. E.; Wass,
D. F. Organometallics 2006, 25, 555. (e) Bowen, L. E.; Charernsuk, M.;
Wass, D. F. Chem. Commun. 2007, 2835. (f) Blann, K.; Bollmann, A.; De
Bod, H.; Dixon, J. T.; Killian, E.; Nongodlwana, P.; Maumela, M. C.;
Maumela, H.; McConnell, A. E.; Morgan, D. H.; Overett, M. J.; Pretorius,
M.; Kuhlmann, S.; Wasserscheid, P. J. Catal. 2007, 249, 244. (g) McGuin-
ness, D. S.; Overett, M.; Tooze, R. P.; Blann, K.; Dixon, J. T.; Slawin, A. M. Z.
Organometallics 2007, 26, 1108.
(5) Overett, M. J.; Blann, K.; Bollmann, A.; de Villiers, R.; Dixon, J.
T.; Killian, E.; Maumela, M. C.; Maumela, H.; McGuinness, D. S.;
Morgan, D. H.; Rucklidge, A.; Slawin, A. M. Z. J. Mol. Catal. A: Chem.
2008, 283, 114.
(6) Dennett, J. N. L.; Gillon, A. L.; Heslop, K.; Hyett, D. J.; Fleming,
J. S.; Lloyd-Jones, C. E.; Orpen, A. G.; Pringle, P. G.; Wass, D. F.; Scutt,
J. N.; Weatherhead, R. H. Organometallics 2004, 23, 6077.
(7) Al-Jibori, S.; Shaw, B. L. Inorg. Chim. Acta 1983, 74, 235.
(8) (a) Rucklidge, A. J.; McGuinness, D. S.; Tooze, R. P.; Slawin, A.
M. Z.; Pelletier, J. D. A.; Hanton, M. J.; Webb, P. B. Organometallics
2007, 26, 2782. (b) Bowen, L. E.; Haddow, M.; Orpen, A. G.; Wass, D. F.
Dalton Trans. 2007, 1160.
(4) Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.;
Maumela, H; McGuiness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.;
Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J. Am.
Chem. Soc. 2004, 126, 14712.
r
2009 American Chemical Society
Published on Web 07/17/2009
pubs.acs.org/Organometallics