3594
T.K. Jana et al. / Inorganica Chimica Acta 362 (2009) 3583–3594
[11] C.K. Jorgensen, Modern Aspects of Ligand Field Theory, Elsevier, New York,
1997.
This redox picture actually attests the molecular composition of the
complexes studied, besides displaying the potentials (in Volts ver-
sus SCE) of the redox reactions.
[12] B. Doglas, D. McDaniel, J. Alexander, in: Concepts and models of Inorganic
Chemistry, 3rd ed., John Wiley and Sons (Asia), Singapore, 2001.
[13] N. Weberg, Inorganic Chemistry, Academic Press, New York, 2001.
[14] J.E. Huheey, E.A. Keiter, R.L. Keiter in: Inorganic Chemistry, Principles of
Structure and Reactivity, 4th ed., Harper and Collins College Publishers, New
York, 1993, Reprinted in India.
4. Concluding remarks
This work discovers that iron (III) complexes with FeIIIS4P2
functionality for example, 3 and 4 (see text) possessing two N,N-
diethyldithiocarbamate (DEDTC; S4) and one 1,2-bis (diphenyl-
phosphino) ethane (dppe; P2) ligands, lie on the right side of spin
crossover zone of the Tanabe Sugano diagram. So, these types of
Fe (III) complexes are all expected to show low-spin behavior in
the entire temperature range of 2–300 K. We expect that our
(immediate) next work will be able to define the left side bound-
aries of the said diagram and the Fe (III) complexes lying on the left
side of that boundary will exhibit only high spin behavior in the
said temperature range. Then we shall get an entire midfield range
accessible by the directed synthesis of Fe (III) complexes possess-
ing slightly lower field strength than the right siders and also by
the complexes having a little higher field strength than the left sid-
ers. Midfielder molecules can be synthesized by modifying or
changing the ligand, so as to posses the right ligand field effect.
All those molecules will then show spin–transition behavior and
can be used in optoelectronics, information storage and other
important properties as mentioned in Section 1.
[15] J.D. Lee, in: Concise Inorganic Chemistry, 4th ed., ELBS and Chapman & Hall,
Singapore, 1994.
[16] N.N. Greenwood, A. Earnshaw, in: Chemistry of the Elements, 2nd ed.,
Butterworth Heineman, London, UK, 1997.
[17] A.B. Gaspar, M.C. Munoz, V. Niel, J.A. Real, Inorg. Chem. 40 (2001) 9.
[18] H.A. Goodwin, Top. Curr. Chem. 234 (2004) 23.
[19] J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity,
Harper and Raw, London, UK, 1975.
[20] A.H. Ewald, R.L. Martin, I.G. Ross, A.H. White, Proc. R. Soc. Lond., Ser. A 280
(1964) 235.
[21] A.H. White, E. Kokot, R. Roper, H. Waterman, R.L. Martin, Aust. J. Chem. 17
(1964) 294.
[22] A.H. Ewald, R.L. Martin, E. Sinn, A.H. White, Inorg. Chem. 8 (1969) 1837.
[23] T. Glaser, B. Hedman, K.O. Hodgson, E.I. Solomon, Acc. Chem. Res. 33 (2000)
859.
[24] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Wiley
Eastern Ltd., New Delhi, 1978.
[25] Tetraphenyl phosphonium salt of FeCl4ꢁ has not yet been reported, though the
complex associated with other organic counter cations are known .C. Furlani,
E. Cervone, V. Valenti, J. Inorg. Nucl. Chem. 25 (1963) 159.
[26] R. Pradhan, S.P. Mukhopadhyay, D.C. Bera, C. Simonnet, F. Secheresse, R.
Bhattacharyya, Inorg. Chem. Commun. 2 (1999) 495.
[27] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, in: Advanced Inorganic
Chemistry, 6th ed., John Wiley and Sons, New York, 1999, p. 793.
[28] G.H. Spikes, E.Bill.T. Weyhermueller, K. Wieghardt, Chem. Commun. (2007)
4339, and references cited therein.
[29] K. Mayer, E. Bill, E. Minert, T. Weyhermueller, K. Wieghardt, J. Am. Chem. Soc.
121 (1999) 4859.
Acknowledgements
[30] A.I. Vogel, in: A Text Book of Practical Organic Chemistry including Qualitative
Organic Analysis, 3rd ed., Longman, London, 1968, p. 499.
[31] J. Hesse, A. Rubartsch, J. Phys. E Sci. Instrum. 7 (1974) 526.
[32] A. Muller, R. Jostes, W. Eltzner, C.S. Nie, E. Diemann, H. Bogge, M.
Zimmermann, M. Dartmann, U. Reinsch-Vogel, S. Che, S.J. Cyvin, B.N. Cyvin,
Inorg. Chem. 14 (1985) 2872.
[33] R. Bhattacharyya, P.K. Chakrabarty, P.N. Ghosh, A.K. Mukherjee, D. Podder, M.
Mukherjee, Inorg. Chem. 30 (1991) 3948.
[34] APEX2 Version 1.0-8; Bruker AXS: Madision, WI, 2003.
[35] SHELXTL Version 6.14; Bruker AXS: Madision, WI, 2001.
[36] G.M. Sheldrick, SADABS, A Program for the Siemens Area Detector Absorption
Correction, 1994.
The authors namely T.K.J., D.P.K., S.D. and R.B. thank Depart-
ment of Science and Technology (DST), Govt. of India for financial
assistance in the form of a Project (Project No. SR/S1/IC-12/2002).
T.K.J. thanks DST and D.P.K. thank CSIR, Govt. of India, for fellow-
ship. The magnetic and Mössbauer studies have been supported
by the Centre Franco-Indien pour 1a promotion de 1a Recherche
Avancee/Indo-French Centre for the Promotion of Advanced Re-
search under Project No. 3108-3.
}
}
[37] R.H. Blessing, Acta Crystallogr. A51 (1995) 33.
[38] G.M. Sheldrick, SHELXL, Siemens Analytical X-ray Instruments, 1994.
[39] G.M. Sheldrick, in: Program for the Refinement of Crystal Structures, 1997.
[40] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[41] D.C. Bradley, M.H. Gitlitz, J. Chem. Soc. A (1969) 1152.
[42] C. O’Connor, J.D. Gilbert, G. Wilkinson, J. Chem. Soc. A (1969) 84.
[43] L.H. Little, G.W. Poling, J. Leja, Can. J. Chem. 39 (1961) 745.
[44] C.W. Watt, B.J. McCormick, Spectrochim. Acta 21 (1965) 753.
[45] C. Udovich, J. Takemoto, K. Nakamoto, J. Coord. Chem. 1 (1971) 89.
[46] B. Hutchinson, P. Neill, A. Finkelstein, J. Takemoto, Inorg. Chem. 20 (1981)
2000.
Appendix A. Supplementary material
CCDC 639617, 639618 and 639619 contain the supplementary
crystallographic data for 1, 3 and 5. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
[47] J.S. Evary, C.D. Burbridge, D.M.L. Goodgame, Spectrochim. Acta 24A (1968)
1721.
[48] K. Nakamoto, in: Infrared and Raman Spectra of Inorganic and coordination
Compounds, 4th ed., John Wiley, New York, 1986, p. 133.
[49] B.N. Figgis, in: Introduction to Ligand Fields, John Wiley Interscience, New
York, 1966, p. 163.
References
[1] L. Cambi, L. Szego, Chem. Ber. 10 (1931) 2591.
[50] S. Ahrland, J. Chatt, N.R. Davies, Quart. Rev. 12 (1958) 265.
[51] G. Klopman, J. Am. Chem. Soc. 90 (1968) 223.
[2] L. Cambi, L. Szego, Chem. Ber. 16 (1933) 656.
[3] Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9 (1954) 753.
[4] I. Krivokapic, C. Euachescu, R. Browisz, A. Hansen, Chem. Phys. Lett. 455 (2006)
192.
[5] V. Escax, A. Bluezen, C. dit Moulin Cartier, F. Villain, A. Goujou, E. Varret, M.
Verdagner, J. Am. Chem. Soc. 123 (2001) 12536.
[6] O. Kahn, J. Kröber, C. Jay, Adv. Mater. 4 (1982) 718.
[7] K. Boukheddaden, J. Shito, B. Hoo, F. Varret, Phys. Rev. B 62 (2000) 14796.
[8] Y. Galimetdinov, V. Kaenofantov, A. Provisin, I. Orchinnikov, G. Ivanova, P.
Gütlich, W. Haase, Angew. Chem., Int. Ed. 113 (2001) 4399.
[9] W.R. Schiet, C.A. Rome, Chem. Rev. 81 (1981) 543.
}
[52] M. Biner, H.B. Bürje, A. Ludi, C. Rohr, J. Am. Chem. Soc. 114 (1992) 5197.
}
[53] R. Shaviv, C.B. Lowe, J.A. Zora, C.B. Aakeroy, P.B. Hitchcock, K.R. Seddon, R.L.
Carlin, Inorg. Chim. Acta 198-200 (1992) 613.
[54] A. Chakrobarty, K. Nag, Coord. Chem. Rev. 33 (1980) 87.
[55] H.H. Wickman, A.M. Trozzolo, H.J. Willium, G.W. Hull, F.R. Merritt, Phys. Rev.
155 (1967) 563.
[56] T. Sato, F. Ambe, T. Kitazawa, H. Sano, M. Takeda, Chem. Lett. (1997) 1287.
[57] A.P. Ginsberg, M.B. Robin, Inorg. Chem. 2 (1963) 817.
[58] G.L. Miesler, D.A. Tarr, in: Inorganic Chemistry, 2nd ed., Prentice Hall
International, New Jersey, 1991.
[10] R.W. Noble, A. de Young, D.L. Rousseau, Biochemistry 28 (1989) 5293.