ORGANIC
LETTERS
2009
Vol. 11, No. 16
3558-3561
Solid-Phase Synthesis of Amino- and
Carboxyl-Functionalized Unnatural
r-Amino Acid Amides
William L. Scott,* Ziniu Zhou, Jacek G. Martynow, and Martin J. O’Donnell*
Department of Chemistry and Chemical Biology, Indiana UniVersity Purdue UniVersity
Indianapolis, Indianapolis, Indiana 46202-3274
wscott@iupui.edu; modonnel@iupui.edu
Received June 8, 2009
ABSTRACT
A new solid-phase synthesis efficiently incorporates three different substituents (from R1-X, R2-CO2H, and R3-NH2) into a glycine-based
peptidomimetic scaffold. The synthetic sequence is general and is typically accomplished in >50% overall isolated yield. Alkylating agents
with a range of reactivities and normal and branched primary amines give good results. Utility was demonstrated by the synthesis of a series
of protected phosphotyrosine mimetics.
The Distributed Drug Discovery (D3) project1,2 develops
methodology for the simple, economical synthesis of struc-
tural scaffolds commonly found in biologically active
molecules. The goal of D3 is to expedite the discovery of
drug leads for neglected diseases. It relies on solid-phase
chemistry, a critical component of which is the nature of
the linker used to join the substrate molecule to the solid
support.3 D3 has utilized various linkers to enable the solid-
phase synthesis of many derivatized scaffolds based on
R-monosubstituted and R,R-disubstituted resin-bound un-
natural amino acid intermediates.
Regardless of the linker, D3-type syntheses based on
derivatives of R-monosubstituted resin-bound unnatural
amino acids start from resin-bound glycine 1 and utilize an
activated benzophenone imine derivative 2. This proceeds,
depending on the linker, to acid 3 (from Wang),1b ester 4
(from Merrifield or Wang),2a,1c amide 5 (from Rink),4 or
ketone/aldehyde 6 (from Weinreb)5 (Scheme 1).
BAL (Backbone Amide Linker) resins3c,6 were developed
for peptide synthesis (Scheme 2). When amino acid amides
7 are made by conventional BAL chemistry, the naturally
occurring amino acids used are obtained commercially and
then attached to the BAL resin (9 to 10).
(1) (a) Scott, W. L.; O’Donnell, M. J. J. Comb. Chem. 2009, 11, 3–13.
(b) Scott, W. L.; Alsina, J.; Audu, C. O.; Babaev, E.; Cook, L.; Dage, J. L.;
Goodwin, L. A.; Martynow, J. G.; Matosiuk, D.; Royo, M.; Smith, J. G.;
Strong, A. T.; Wickizer, K.; Woerly, E. M.; Zhou, Z.; O’Donnell, M. J.
J. Comb. Chem. 2009, 11, 14–33. (c) Scott, W. L.; Audu, C. O.; Dage,
J. L.; Goodwin, L. A.; Martynow, J. G.; Platt, L. K; Smith, J. G.; Strong,
A. T.; Wickizer, K.; Woerly, E. M.; O’Donnell, M. J. J. Comb. Chem.
Our goal is to apply BAL methodology to the synthesis
of the fundamental peptidomimetic scaffold 7, now with the
2009, 11, 34–43
.
(2) For lead references concerning the solid-phase synthesis of unnatural
R-amino acids, peptides, and peptidomimetics from the authors’ laboratory,
see: (a) O’Donnell, M. J.; Zhou, C.; Scott, W. L. J. Am. Chem. Soc. 1996,
118, 6070–6071. (b) Scott, W. L.; Martynow, J. G.; Huffman, J. C.;
(4) Scott, W. L.; Delgado, F.; Lobb, K.; Pottorf, R. S.; O’Donnell, M. J.
Tetrahedron Lett. 2001, 42, 2073–2076.
O’Donnell, M. J. J. Am. Chem. Soc. 2007, 129, 7077–7088
.
(5) O’Donnell, M. J.; Drew, M. D.; Pottorf, R. S.; Scott, W. L. J. Comb.
Chem. 2000, 2, 172–181.
(3) (a) Guillier, F.; Orain, D.; Bradley, M. Chem. ReV. 2000, 100, 2091–
2157. (b) Cironi, P.; Alvarez, M.; Albericio, F. Mini-ReV. Med. Chem. 2006,
6, 11–25. (c) Boas, U.; Brask, J.; Jensen, K. J. Chem. ReV. 2009, 109, 2092–
2118.
(6) (a) Jensen, K. J.; Alsina, J.; Songster, M. F.; Va´gner, J.; Albericio,
F.; Barany, G. J. Am. Chem. Soc. 1998, 120, 5441–5452. (b) Alsina, J.;
Albericio, F. Biopolymers 2003, 71, 454–477
.
10.1021/ol901279v CCC: $40.75
Published on Web 07/22/2009
2009 American Chemical Society