ORGANIC
LETTERS
2012
Vol. 14, No. 20
5207–5209
Synthesis of Bacillithiol and the Catalytic
Selectivity of FosB-Type Fosfomycin
Resistance Proteins
Alexander P. Lamers, Mary E. Keithly, Kwangho Kim, Paul D. Cook, Donald F. Stec,
Kelly M. Hines, Gary A. Sulikowski,* and Richard N. Armstrong*
Departments of Chemistry and Biochemistry, Vanderbilt University, Vanderbilt Institute
of Chemical Biology, Nashville, Tennessee 37235, United States
gary.a.sulikowski@vanderbilt.edu; r.armstrong@vanderbilt.edu
Received August 20, 2012
ABSTRACT
Bacillithiol (BSH) has been prepared on the gram scale from the inexpensive starting material, D-glucosamine hydrochloride, in 11 steps and
8ꢀ9% overall yield. The BSH was used to survey the substrate and metal-ion selectivity of FosB enzymes from four Gram-positive
microorganisms associated with the deactivation of the antibiotic fosfomycin. The in vitro results indicate that the preferred thiol substrate
and metal ion for the FosB from Staphylococcus aureus are BSH and Ni(II), respectively. However, the metal-ion selectivity is less distinct with
FosB from Bacillus subtilis, Bacillus anthracis, or Bacillus cereus.
Low-molecular-weight thiols are critical to living
systems for maintaining a reducing environment in the
cytosol and preventing oxidation of cysteine residues in
proteins. Eukaroyotes typically utilize glutathione for
these purposes while most Gram-positive bacteria and
Archae lack glutathione and instead utilize novel cysteine
derived thiols.1 For example, the N-acetyl cysteine deriva-
tive mycothiol (MSH, Figure 1) is found in most actino-
mycetes including mycobacteria and streptomycetes.2
In 2009 a structurally related thiol, bacillithiol (BSH,
Figure 1), was detected in Gram-positive bacteria, includ-
ing Bacilli and Staphylococcus aureus and then isolated
from Deinococcus radiodurans and characterized as its
S-bimane derivative (BSmB, Figure 1).3,4 Subsequently, a
biosynthetic pathway for BSH was proposed and the first
chemical synthesis was reported.5,6
Although the functions of BSH in biology are not fully
understood, recent reports suggest that it may be the
preferred substrate for the FosB-type fosfomycin resis-
tance proteins.5,6 FosB is a metallo-enzyme, found in
Gram-positive microorganisms, that catalyzes the general
reaction illustrated in Scheme 1 and confers resistance to
the antibiotic, fosfomycin.7 Previous work in our labora-
tory suggested that the preferred thiol substrate and
divalent metal ion might be L-Cys and Mg2þ, respectively.7
The discovery of BSH and the availability in our lab of
FosB enzymes from several Gram-positive microorgan-
isms prompted us to initiate an investigation of their sub-
strate and metal-ion selectivity. In this report we describe
a complete chemical synthesis of BSH from inexpensive
(1) (a) Fahey, R. C. Annu. Rev. Microbiol. 2001, 55, 333. (b) Masip,
L.; Veeravalli, K.; Georgioui, G. Antioxid. Redox Sign. 2006, 8, 753.
(2) Jothivasan, V. K.; Hamilton, C. J. Nat. Prod. Rep. 2008, 25, 1091.
(3) Newton, G. L.; Rawat, M.; La Clair, J. J.; Jothivasan, V. K.;
Budiarto, T.; Hamilton, C. J.; Claiborne, A.; Helmann, J. D.; Fahey,
R. C. Nat. Chem. Biol. 2009, 5, 625.
(4) Review: Helmann, J. D. Antioxid. Redox Sign. 2011, 15, 123.
(5) Biosynthesis studies: (a) Gaballa, A.; Newton, G. L.; Antelmann,
H.; Parsonage, D.; Upton, H.; Rawat, M.; Claiborne, A.; Fahey, R. C.;
Helmann, J. D. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 6482. (b)
Parsonage, D.; Newton, G. L.; Holder, R. C.; Wallace, B. D.; Paige,
C.; Hamilton, C. J.; Dos Santos, P. C.; Redinbo, M. R.; Reid, S. D.;
Claiborne, A. Biochemistry 2010, 49, 8398. (c) Upton, H.; Newton,
G. L.; Gushiken, M.; Lo, K.; Holden, D.; Fahey, R. C.; Rawat, M.
FEBS Lett. 2012, 586, 1004.
(6) Sharma, S. V.; Jothivasan, V. K.; Newton, G. L.; Upton, H.;
Wakabayashi, J. I.; Kane, M. G.; Roberts, A. A.; Rawat, M.; La Clair,
J. J.; Hamilton, C. J. Angew. Chem., Int. Ed. 2011, 50, 7101.
(7) (a) Cao, M.; Bernat, B. A.; Wang, Z. P.; Armstrong, R. N.;
Helmann, J. D. J. Bacteriol. 2001, 183, 2380. (b) Rigsby, R. E.; Fillgrove,
K. L.; Beihoffer, L.; Armstrong, R. N. Methods Enzymol. 2005, 401, 367.
r
10.1021/ol302327t
2012 American Chemical Society
Published on Web 10/03/2012