1284
C. T. Öberg et al. / Carbohydrate Research 344 (2009) 1282–1284
Ph
O
O
O
SPh
Ph
Ph
Ph
OAc
HO
O
O
O
12
O
c
O
O
Ph
O
O
O
b
e
d or h
R2O
SPh
SPh
N3
SPh
O
OR1
OAc
OAc
O
TfO
g
14
O
10 R1=R2=H
13
SPh
a
11 R1=Ac, R2=OTf
OR1
R2O
15 R1=R2=Ac
f
16 R1=R2=H
Scheme 3. Reagents and conditions for routes 1 and 2 applied onto phenyl 1-thio-b-
D
-galactopyranoside: (a) i. Tf2O, pyridine, CH2Cl2, À10 °C, ii. AcCl; (b) QNO2, DMF, 50 °C
(60% from 10); (c) Tf2O, pyridine, CH2Cl2, À20 °C; (d) QN3, DMF, 50 °C (59% from 12); (e) CsOAc, DMF (77% from 10); (f) NaOMe, MeOH (98%); (g) i. AcCl, pyridine, CH2Cl2, rt, ii.
Tf2O, À10 °C; (h) NaN3, DMF, 50 °C (42% from 16).
Table 1
herein are demonstrated with azide ion as the second nucleophile,
we envision that reaction of 4 and 13 using other nucleophiles, such
as halides, sulfur or carbon-based nucleophiles, will allow for effi-
cient preparation of other 3-deoxy-galactoside derivatives.
Summary of routes to 3-azido-galactose derivatives
Route
No of rxns
No of chrom.
Total yield (%)
Literature routea
Route 1, Scheme 1
Route 2, Scheme 1
Route 3, Scheme 2
Route 1, Scheme 3
Route 2, Scheme 3
1121–23,3,10,15
9
2
3
2
2
2
36b/19c
36
53
4
5
5
4
5
Acknowledgments
51
25d/35e
32
We thank Lund University, the Swedish Research Council, the
programs ‘Glycoconjugates in Biological Systems’ (GLIBS), and
‘Chemistry for Life Sciences’ sponsored by the Swedish Strategic
Research Foundation for financial support.
a
From di-isopropylidene-
-galactopyranoside.21–23,3,10,15
The best overall yield possible by combining the literature reports and our own
D-glucofuranose to methyl 3-azido-4,6-O-benzylidene-
3-deoxy-1-thio-b-
D
.
b
results.
c
d
e
The best overall yield in our hands.
NaN3 was used in step h.
QN3 was used in step d.
Supplementary data
Supplementary data associated with this article can be found, in
strated by conversion of the phenyl 4,6-benzylidene-1-thio-b-
galactopyranoside 10 into the phenyl 2-O-acetyl-3-azido-4,6-ben-
zylidene-3-deoxy-1-thio-b- -galactopyranoside 14 in good overall
yields (Scheme 3). The yield of 14 could be improved by using tet-
rabutylammonium azide (compare Scheme 1), however for larger
scale we prefer using sodium azide for safety and cost reasons de-
spite the slightly lower yield.
D-
References
D
1. Nilsson, U.; Johansson, R.; Magnusson, G. Chem. Eur. J. 1996, 2, 295–302.
2. Sandström, C.; Nilsson, U. J.; Magnusson, G.; Kenne, L. Carbohydr. Res. 1999, 322,
46–56.
3. Lowary, T. L.; Hindsgaul, O. Carbohydr. Res. 1994, 251, 33–67.
4. Liakatos, A.; Kiefel, M. J.; von Itzstein, M. Org. Lett. 2003, 5, 4365–4368.
5. Liakatos, A.; Kiefel, M. J.; Fleming, F.; Coulson, B.; von Itzstein, M. Bioorg. Med.
Chem. 2006, 14, 739–757.
6. Rich, J. R.; Bundle, D. R. Org. Lett. 2004, 6, 897–900.
7. Dong, H.; Pei, Z.; Ramström, O. J. Org. Chem. 2006, 71, 3306–3309.
8. Pei, Z.; Dong, H.; Ramström, O. J. Org. Chem. 2005, 70, 6952–6955.
9. Dong, H.; Rahm, M.; Brinck, T.; Ramström, O. J. Am. Chem. Soc. 2008, 130,
15270–15271.
3. Summary
A comparison of the original route from the commercial di-iso-
propylidene-glucofuranose with the herein presented routes from
10. Sörme, P.; Qian, Y.; Nyholm, P.-G.; Leffler, H.; Nilsson, U. J. ChemBioChem 2002,
3, 183–189.
11. Sörme, P.; Arnoux, P.; Kahl-Knutsson, B.; Leffler, H.; Rini, J. M.; Nilsson, U. J. J.
Am. Chem. Soc. 2005, 127, 1737–1743.
commercial methyl 4,6-benzylidene-b-
D
-galactopyranoside 1 and
phenyl 4,6-benzylidene-1-thio-b-
D-galactopyranoside 10 is pre-
sented in Table 1.
12. Cumpstey, I.; Sundin, A.; Leffler, H.; Nilsson, U. J. Angew. Chem., Int. Ed. 2005, 44,
5110–5112.
13. Salameh, B. A.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem. Lett. 2005, 15, 3344–
3346.
4. Concluding remarks
14. Salameh, B. A.; Sundin, A.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem. 2006, 14,
1215–1220.
15. Öberg, C. T.; Leffler, H.; Nilsson, U. J. J. Med. Chem. 2008, 51, 2297–2301.
16. Cumpstey, I.; Salomonsson, E.; Sundin, A.; Leffler, H.; Nilsson, U. J. Chem. Eur. J.
2008, 14, 4233–4245.
17. Knapp, S.; Kukkola, P. J.; Sharma, S.; Murali Dhar, T. G.; Naughton, A. B. J. J. Org.
Chem. 1990, 55, 5700–5710.
18. Tipson, R. S.; Cohen, A. Carbohydr. Res. 1965, 1, 338–340.
19. Kobayashi, Y.; Tsuchiya, T.; Umezawa, S.; Yoneta, T.; Fukatsu, S.; Umezawa, H.
Bull. Chem. Soc. Jpn. 1987, 60, 713–720.
In conclusion, 3-azido-3-deoxy-b-
synthesized in few steps and in high yields via double inversion of
4,6-O-benzylidene-b- -galactopyranosides. The route based on cis-
hydroxylation of 2,3-dianhydro-b- -galactopyranosides is faster,
more practical, and preferable for the preparation of 3-azido-3-
deoxy-b- -galactopyranosides. However, another route based on
sequential inversion of galacto and gulo 3-O-triflates is preferred if
1-thio-b- -galactopyranosides are the desired product. Hence, the
D-galactopyranosides can be
D
D
D
D
20. Ahrngren, L.; Sutin, L. Org. Process Res. Dev. 1997, 1, 425–427.
21. Lankin, D. C.; Nugent, S. T.; Rao, S. N. Carbohydr. Res. 1993, 244, 49–68.
22. Slessor, K. N.; Tracey, A. S. Can. J. Chem. 1969, 47, 3990–3995.
23. Lemieux, R. U.; Stick, R. V. Aust. J. Chem. 1975, 28, 1799–1801.
two routes complement each other and both serve as attractive
alternatives to the more common literature procedure from di-iso-
propylidene-D-glucose. Although, the double inversion protocols