pubs.acs.org/joc
matory drugs,6 and perfume ingredients.7 However, indole
Efficient Regioselective Synthesis of Indole
N-Carboximidamides and N-Carboximidoates by a
Sequential Aza-Wittig/Ag(I)-Catalyzed Cyclization
N-carboximidamides and N-carboximidoates are rarely
investigated probably due to the fact that they are not easily
accessible by routine synthetic methods.8
The synthesis and functionalization of indoles has been a
major area of focus for synthetic organic chemists, and
numerous well-established classical methods for the prepara-
tion of indoles have been developed.9 Recently, one of the
most convenient methods for catalytic intramolecular cycli-
zation of 2-alkynylaniline derivatives into polysubstituted
indole derivatives has been paid particular attention.10 The
reaction could be catalyzed by a strong base, such as
NaOEt,11 KOt-Bu,12 and KH,13 or by Lewis acidic iodine
complexes,14 or by various late transition metal complexes
involving Pd,15 Cu,16 In,17 Au,18 Fe,19 Ag,20 etc. However, to
the best of our knowledge, analogous intramolecular cycli-
zation of a (2-alkynylphenyl)guanidine (or isourea) has
never been reported.
Nian-Yu Huang,†,‡ Ming-Guo Liu,‡ and Ming-Wu Ding*,†
†Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Central China Normal University,
Wuhan 430079, People’s Republic of China, and ‡Hubei Key
Laboratory of Natural Products Research and Development,
China Three Gorges University, Yichang 443002, People’s
Republic of China
Received June 26, 2009
The aza-Wittig reactions of iminophosphoranes have
received increased attention in view of their utility in the
synthesis of nitrogen-containing heterocyclic compounds.21
(7) Gaudin, J.-M. PCT Int. Appl., WO 2009016583, 2009 [ Chem. Abstr.
2009, 150, 221632.].
(8) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2006, 25, 5515.
(9) For some recent books on indole, see: (a) Joule, J. A.; Mills, K. In
Heterocyclic Chemistry, 4th ed.; Blackwell Science Ltd: Oxford, UK, 2000.
(b) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford,
UK, 1996. (c) Sundberg, R. J. Indoles; Academic Press: San Diego, CA, 1996.
(10) For recent reviews on the synthesis of indoles, see: (a) Humphrey,
G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–. (b) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873–. (c) Gilchrist, T. L. J. Chem. Soc., Perkin Trans.
1 2001, 2491. (d) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045.
(e) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1.
(11) (a) Wang, J.; Soundarajan, N.; Liu, N.; Zimmermann, K.; Naidu, B.
N. Tetrahedron Lett. 2005, 46, 907. (b) Shin, K.; Moriya, M.; Ogasawara, K.
Tetrahedron Lett. 1998, 39, 3765.
(12) (a) Kondo, Y.; Kojima, S.; Sakamoto, T. J. Org. Chem. 1997, 62,
6507. (b) Dai, W.-M.; Sun, L.-P.; Guo, D.-S. Tetrahedron Lett. 2002, 43,
7699. (c) Sendzik, M.; Hui, H. C. Tetrahedron Lett. 2003, 44, 8697.
(13) (a) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew.
Chem., Int. Ed. 2000, 39, 2488. (b) Koradin, C.; Dohle, W.; Rodriguez, A. L.;
Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571. (c) Sun, L.-P.; Huang,
X.-H.; Dai, W.-M. Tetrahedron 2004, 60, 10983.
An efficient Ag(I)-catalyzed regioselective cyclization of
(2-alkynylphenyl)guanidine or (2-alkynylphenyl)isourea
to indole N-carboximidamides or N-carboximidoates has
been developed. The approach has the advantages of high
regioselectivity, mild reaction conditions, easily accessi-
ble starting materials, and good yields.
The chemistry of indoles has received particular attention
because the indole moiety is a structural component of a vast
number of bioactive natural and synthetic compounds.1
Some N-aryl or N-acyl indoles exhibit wide pharmacological
activity and could be used as selective hPPARγ receptor
agonists,2 high-affinity reagents for the 5-HT6 receptor,3 and
cyclooxygenase (COX) inhibitors.4 Indole-1-carboxamides
could also be used as agrochemical fungicides,5 anti-inflam-
(14) (a) Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. (b) Yue, D.;
Larock, R. C. Org. Lett. 2004, 6, 1037. (c) Amjad, M.; Knight, D. W.
Tetrahedron Lett. 2004, 45, 539. (d) Barluenga, J.; Trincado, M.; Rubio, E.;
^
Gonzalez, J. M. Angew. Chem., Int. Ed. 2003, 42, 2406.
(15) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Parisi, L. M.
J. Org. Chem. 2005, 70, 6213. (b) Sun, L.-P.; Huang, X.-H.; Dai, W.-M.
Tetrahedron 2004, 60, 10983. (c) Ackermann, L. Org. Lett. 2005, 7, 439.
(16) (a) Ackermann, L. Org. Lett. 2005, 7, 439. (b) Hiroya, K.; Itoh, S.;
Sakamoto, T. J. Org. Chem. 2004, 69, 1126. (c) Kamijo, S.; Sasaki, Y.;
Yamamoto, Y. Tetrahedron Lett. 2004, 45, 35. (d) Farr, R. N.; Alabaster,
R. J.; Chung, J. Y. L.; Craig, B.; Edwards, J. S.; Gibson, A. W.; Ho, G.-J.;
Humphrey, G. R.; Johnson, S. A.; Grabowski, E. J. J. Tetrahedron:
Asymmetry 2003, 14, 3503. (e) Ma, C.; Liu, X.; Li, X.; Flippen-Anderson,
J.; Yu, S.; Cook, J. M. J. Org. Chem. 2001, 66, 4525. (f) Katriizky, A. R.; Li,
J.; Stevens, C. V. J. Org. Chem. 1995, 60, 3401.
(17) (a) Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T.
J. Org. Chem. 2008, 73, 4160. (b) Sakai, N.; Annaka, K.; Konakahara, T.
Tetrahedron Lett. 2006, 47, 631. (c) Sakai, N.; Annaka, K.; Konakahara, T.
Org. Lett. 2004, 6, 1527.
(18) (a) Yoji, M.; Shuvin, K. J. Comb. Chem. 2008, 10, 355. (b) Zhang, Y.;
Donahue, J. P.; Li, C.-J. Org. Lett. 2007, 9, 627. (c) Ambrogio, I.; Arcadi, A.;
Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2007, 1775.
(1) (a) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II;
Wiley-VCH: Weinheim, Germany, 2003. (b) Ma, J.; Yin, W.; Zhou, H.; Cook, J.
M. Org. Lett. 2007, 9, 3491.
(2) Acton, J. J. III; Black, R. M.; Jones, A. B.; Moller, D. E.; Colwell, L.;
Doebber, T. W.; MacNaul, K. L.; Berger, J.; Wood, H. B. Bioorg. Med.
Chem. Lett. 2005, 15, 357.
(3) (a) Woolley, M. L.; Marsden, C. A.; Fone, K. C. Curr. Drug Targets:
CNS Neurol. Disord. 2004, 3, 59. (b) Cole, D. C.; Ellingboe, J. W.; Lennox,
W. J.; Mazandarani, H.; Smith, D. L.; Stock, J. R.; Zhang, G.; Zhou, P.;
Schechter, L. E. Bioorg. Med. Chem. Lett. 2005, 15, 379.
(4) Sano, H.; Noguchi, T.; Tanatani, A.; Hashimoto, Y.; Miyachi, H.
Bioorg. Med. Chem. 2005, 13, 3079.
(5) Phillion, D. P.; Graneto, M. J. Eur. Pat. Appl., EP 619297, 1994
[Chem. Abstr. 1995, 122, 31133].
(19) Terrason, V.; Michaux, J.; Gaucher, A.; Wehbe, J.; Marque, S.;
Prim, D.; Campagne, J.-M. Eur. J. Org. Chem. 2007, 32, 5332.
(6) Kathawala, F. G. U.S. 3890348, 1975 [ Chem. Abstr. 1975, 83,
131453].
(20) Van Esseveldt, B. C. J.; van Delft, F. L.; Smits, J. M. M.; de Gelder,
R.; Schoemaker, H. E.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2004, 346, 823.
6874 J. Org. Chem. 2009, 74, 6874–6877
Published on Web 08/07/2009
DOI: 10.1021/jo901362c
r
2009 American Chemical Society