3854
F. Yu, Z. Guo / Bioorg. Med. Chem. Lett. 19 (2009) 3852–3855
Table 1
Acknowledgments
Results of the reductive ring opening of acetals 19, 20, 22 and 23 under various
conditions
This research was supported in part by NSF (CHE-0407144 and
0715275) and Mizutani Foundation for Glycoscience. We thank Dr.
B. Shay and Dr. L. Hryhorczuk for the HR MS measurements and Dr.
B. Ksebati for some help with NMR NOE measurements.
Entry
Reaction conditions
Reactant
Product yield (%)
1
2
3
4
5
6
7
8
9
NaBH3CN, AlCl3, THF, 0 °C
NaBH3CN, HCl, Et2O, THF, 0 °C
NaBH3CN, AlCl3, THF, 0 °C
NaBH3CN, HCl, Et2O, THF, 0 °C
Et3SiH, BF3ꢃEt2O, CH2Cl2, 0 °C
LiAlH4, AlCl3, CH2Cl2, Et2O, refl.
NaBH3CN, AlCl3, THF, 0 °C
NaBH3CN, HCl, Et2O, THF, 0 °C
LiAlH4, AlCl3, CH2Cl2, Et2O, refl.
NaBH3CN, AlCl3, THF, 0 °C
19
19
20
20
20
20
22
22
22
23
23
23
15 (81)
15 (67)
21 (82)
21 (83)
21 (58)
21 (71)
24 (62)
24 (72)
24 (56)
13 (67)
13 (72)
13 (54)
References and notes
1. Ferguson, M. A. J.; Williams, A. F. Ann. Rev. Biochem. 1988, 57, 285.
2. Thomas, J. R.; Dwek, R. A.; Rademacher, T. W. Biochemistry 1990, 29, 5413.
3. Udodong, U. E.; Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Am. Chem. Soc. 1993,
115, 7886.
4. Campbell, A. S.; Fraser-Reid, B. J. Am. Chem. Soc. 1995, 117, 10387.
5. Baeschlin, D. K.; Chaperon, A. R.; Charbonneau, V.; Green, L. G.; Ley, S. V.;
Lucking, U.; Walther, E. Angew. Chem., Int. Ed. 1998, 37, 3423.
6. Baeschlin, D. K.; Chaperon, A. R.; Green, L. G.; Hahn, M. G.; Ince, S. J.; Ley, S. V.
Chem. Eur. J. 2000, 6, 172.
10
11
12
NaBH3CN, HCl, Et2O, THF, 0 °C
LiAlH4, AlCl3, CH2Cl2, Et2O, refl.
7. Martin-Lomas, M.; Khiar, N.; Garcia, S.; Koessler, J.-L.; Nieto, P. M.; Rademache,
T. W. Chem. Eur. J. 2000, 6, 3608.
8. Dietrich, H.; Espinosa, J. F.; Chiara, J. L.; Jimenez-Barbero, J.; Leon, Y.; Varela-
Nieto, I.; Mato, J.-M.; Cano, F. H.; Foces-Foces, C.; Martin-Lomas, M. Chem. Eur.
J. 1999, 5, 320.
9. Murakata, C.; Ogawa, T. Tetrahedron Lett. 1990, 31, 2439.
10. Murakata, C.; Ogawa, T. Carbohydr. Res. 1992, 235, 95.
11. Murakata, C.; Ogawa, T. Tetrahedron Lett. 1991, 32, 671.
12. Mayer, T. G.; Kratzer, B.; Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1994, 33,
2177.
13. Mayer, T. G.; Weingart, R.; Münstermann, F.; Kawada, T.; Kurzchalia, T.;
Schmidt, R. R. Eur. J. Org. Chem. 1999, 2563.
14. Kratzer, B.; Mayer, T. G.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 291.
15. Xue, J.; Guo, Z. Bioorg. Med. Chem. Lett. 2002, 12, 2015.
16. Xue, J.; Guo, Z. J. Am. Chem. Soc. 2003, 125, 16334.
potential explanation for these observations is that the O-1 posi-
tion of 19 is less sterically hindered than the O-2 position, thus,
the acid catalyst would preferably attack O-1 to afford 15 as the
ring opening product, but for 20 the O-2 position may be more
accessible for the acid catalyst. We have also examined the ring
opening reaction using other reagents and catalysts, such as
BH3ꢁTHF/TMSOTf, BH3ꢁTHF/CoCl2, BH3ꢁTHF/Cu(OTf)2, and DIBAL-
H, but we observed that under these conditions the reaction was
either very complex or did not proceed at all.
Finally, the 1,2-cis-diol of
9 was also protected with a
p-methoxybenzylidene group, which was followed by allylation
to give isomers 22 and 23 in a combined over yield of 80% (Scheme
4). The configurations of 22 and 23 were determined by NOE
experiments and by comparing their 1H NMR spectra with that
of 19 and 20.22 Similar to 19 and 20, the reductive ring opening
of the acetal group of 22 and 23 was regiospecific to afford only
24 and 13, respectively, under several reductive conditions (Table
1, entries 7–12). Since compound 24 has 1,2,6-O-positions differ-
entiated as well, it should be also useful for GPI syntheses.
In summary, three efficient and practical synthetic methods
have been developed for large-scale preparations of chiral myo-
inositol derivatives that have distinctive protections at 1,2,6-O-
positions. Compound 1332 was prepared in 11–12 steps starting
17. Sureshan, K. M.; Shashidhar, M. S.; Praveen, T.; Das, T. Chem. Rev. 2003, 103,
4477.
18. Guo, Z.; Bishop, L. Eur. J. Org. Chem. 2004, 3585.
19. Luchetti, G.; Ding, K.; Kornienko, A.; d’Alarcao, M. Synthesis 2008, 3148.
20. Kornienko, A.; Turner, D. I.; Jaworek, C. H.; d’Alarcao, M. Tetrahedron:
Asymmetry 1998, 9, 2783.
21. Jia, Z. J.; Olsson, L.; Fraser-Reid, B. J. Chem. Soc., Perkin Trans. 1 1998, 631.
22. Hudlicky, T.; Mandel, M.; Rouden, J.; Lee, R. S.; Bachmann, B.; Dudding, T.; Yost,
K. J.; Merola, J. S. J. Chem. Soc., Perkin Trans. 1 1994, 1553.
23. Conrad, R. M.; Grogan, M. J.; Bertozzi, C. R. Org. Lett. 2002, 4, 1359.
24. Luchetti, G.; Ding, K.; d’Alarcao, M.; Kornienko, A. Synthesis 2008, 3142.
25. Bender, S. L.; Budhu, R. J. J. Am. Chem. Soc. 1991, 113, 9883.
26. Estevez, V. A.; Prestwich, G. D. J. Am. Chem. Soc. 1991, 113, 9885.
27. Lu, J.; Jayaprakash, K. N.; Fraser-Reid, B. Tetrahedron Lett. 2004, 45, 879.
28. Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779.
29. Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1984, 201.
30. Johnsson, R.; Olsson, D. U. E. J. Org. Chem. 2008, 73, 5226.
31. Crossman, A., Jr.; Paterson, M. J.; Ferguson, M. A. J.; Smith, T. K.; Brimacombea,
J. S. Carbohydr. Res. 2002, 337, 2049.
from methyl
a-D-glucopyranoside (Schemes 1, 2 and 4) to obtain
15–19% overall yields. Compounds 15, 21 and 2432 were prepared
in 10–11 steps (Schemes 1, 3 and 4) with 13–17% overall yields. All
these compounds are useful intermediates in GPI synthesis,
depending on the specific design for a GPI synthesis and the inter-
mediates involved; therefore, all three synthetic methods are use-
ful. However, the method described in Scheme 2 is recommended
for most applications, because of its higher overall yield and flexi-
bility to introduce different protecting groups at 1,2,6-O-positions
in the synthesis.
32. Spectroscopic data of some synthetic targets 13:15
½
a 2D2
ꢂ
¼ ꢀ7:9 (c 1.0, CHCl3); 1
H
NMR (400 MHz, CDCl3): d 7.37–7.23 (m, 17 H, Ph), 6.90 (d, J = 8.8 Hz, 2H, Ph),
6.04–5.94 (m, 1H, ACH@), 5.30 (dd, J = 1.6, 18.0 Hz, 1H,@CH2), 5.18 (dd, J = 1.6,
8.8 Hz, 1H,@CH2), 4.94–4.81 (m, 4H, Bn), 4.72–4.61 (m, 4H, Bn), 4.40 (dd,
J = 5.6, 12.0, Hz, 1H, CH2AC@), 4.34 (dd, J = 5.6, 12.0 Hz, 1H, CH2AC@), 4.17 (t,
J = 2.4 Hz, 2-H), 3.99–3.91 (m, 1H, 4-H), 3.88–3.74 (m, 1H, 6-H), 3.82 (s, 3 H,
OMe), 3.40 (t, J = 9.6 Hz, 1H, 5-H), 3.37 (dd, J = 2.4 Hz, 1H, 1-H), 3.31 (dd, J = 2.4,
8.8 Hz, 1H, 3-H), 2.46 (s, 3 H, OH). 13C NMR (CDCl3, 100.0 MHz): d 159.3,
138.73, 138.65, 137.9, 135.3, 130.1, 129.8, 129.4, 128.4, 128.3, 128.0, 127.82,
127.79, 127.6, 127.5, 116.6, 83.1, 81.1, 80.8, 79.7, 79.2, 75.95, 75.89, 74.5, 72.6,
72.4, 67.6. MS (ESI) m/z: calcd for C38H42O7 [M+], 610.3. Found: 649.1 (M+K+),
633.1 (M+Na+).
Compound 15:31
½
a 2D2
ꢂ
¼ ꢀ8:3 (c 0.6, CHCl3); 1H NMR (400 MHz, CDCl3): d 7.40–
7.24 (m, 20H), 6.02–5.88 (m, 1H, ACH@), 5.26 (dd, J = 2.4, 17.1 Hz, 1H, @CH2),
5.15 (d, J = 10.0 Hz, = CH2), 5.04–4.66 (m, 8 H, Bn), 4.36 (dd, J = 7.6, 16.0 Hz, 1 H,
CH2AC@), 4.28 (dd, J = 7.6, 16.0 Hz, 1H, CH2AC@), 4.06–4.00 (m, 2H, 2,4-H),
3.67 (t, J = 12.0, Hz, 1H, 5-H), 3.50–3.40 (m, 3H, 1,3,6-H). 13C NMR (CDCl3,
100.0 MHz): d 138.7, 135.1, 128.4, 128.3, 128.0, 127.9, 127.75, 127.68, 127.6,
127.5, 117.1, 83.5, 81.9, 81.8, 81.1, 77.1, 75.9, 75.8, 74.7, 74.3, 73.0, 72.3. MS
(ESI) m/z: calcd for C37H40O6 [M+], 580.0. Found: 619.1 (M+K+), 603.1 (M+Na+).
AllO
AllO
a,b
(80%)
BnO
BnO
O
O
H
9
+
BnO
BnO
BnO
BnO
O
23
O
H
PMP
22
PMP
Compound 21: ½a 2D2
ꢂ
¼ ꢀ6:0 (c 0.85, CHCl3); 1H NMR (400 MHz, CDCl3): d 7.40–
seeTable1
seeTable1
7.22 (m, 20H, Ph), 6.02–5.90 (m, 1H, ꢀCH@), 5.27 (d, J = 16.8 Hz, 1H,@CH2),
5.16 (d, J = 10.8 Hz, 1H,@CH2), 4.90–4.64 (m, 8H, Bn), 4.38 (dd, J = 5.6, 12.0 Hz,
1H, CH2AC@), 4.33 (dd, J = 5.6, 12.0 Hz, CH2AC@), 4.19 (t, J = 2.1 Hz, 1H, 2-H),
3.98–3.91 (m, 1H, 4-H), 3.84 (t, J = 9.6 Hz, 1H, 5-H), 3.42–3.28 (m, 3H, 1,3,6-H).
13C NMR (CDCl3, 100.0 MHz): d 138.7, 138.6, 137.9, 135.2, 128.4, 128.3, 128.0,
127.84, 127.81, 127.59, 127.56, 116.7, 83.1, 81.1, 80.8, 79.7, 79.6, 76.0, 75.9,
74.6, 72.8, 72.7, 67.6. HRMS (ESI): calcd for C37H40O6Na [M+Na+]: 603.2723.
Found: 603.2701.
AllO
13
BnO
BnO
OH
BnO
24
OPMB
Compound 24: ½a 2D2
ꢂ
¼ ꢀ5:8 (c 1.1, CHCl3); 1H NMR (400 MHz, CDCl3) d 7.38–
Scheme 4. Reagents and conditions: (a) p-MeOPhCH(OMe)2, p-TsOH, CH3CN, rt; (b)
AllBr, NaH, DMF, rt.
7.26 (m, 17H, Ph), 6.86 (d, J = 8.0 Hz, 2H, Ph), 6.00–5.88 (m, 1H, ACH@), 5.25 (d,