4302
J. Bonjoch et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4299–4302
Table 4
Table 7
Binding and oral activities for compounds lacking the carboline N-atom (35, 36, 39,
40)
Duration of action in vivo of selected compounds
Compound
Oral activitya
4 h
a
Compd
LTD4 binding IC50 (nM)
Inhibition of LTD4 extravasationb
1 h
8 h
39
40
35
36
4.8 (1.4)
4.9 (2.1)
4.4 (2.8)
3.4 (3)
29 (0.1); 52 (1)
14 (0.1); 66 (1)
24 (0.1); 31 (1)
0 (0.1); 15 (1)
1
0.06
0.02
0.014
0.14
0.26
0.027
0.041
0.04
0.02
0.43
2.0
0.075
0.03
0.05
0.39
1.0
21
30
Ab
Bb
Cb
a,b
See footnotes at Table 1.
0.008
0.006
a
Inhibition of LTD4 extravasion: ED50, mg/kg.
A:{3-[2-Methoxy-4-toluene-2-sulfonylaminocarbonyl)benzyl]-1-methyl-1H-
b
Table 5
Binding and oral activities for different lipophilic moieties (1, 18–24)
indol-5-yl}carbamic acid cyclopentyl ester (zafirlukast); B: 8-[4-(4-phenylbu-
tyloxy)benzoyl]amino-2-(tetrazol-5-yl)-4-oxo-4H-1-benzopyran (pranlukast); C:
[1-(1-{3-[2-(7-chloroquinolin-2-yl)-vinyl]-phenyl}-3-[2-(1-hydroxy-1-methyl-ethyl)-
phenyl]-propylsulfanylmethyl)-cyclopropyl]-acetic acid (montelukast).
Het
CO2H
N
R1 R2
N
R1
R2
1
18
H
H
Cl
F
Het
19 Cl Cl
Acknowledgments
N
20
21
F
F
Cl
F
We would like to thank D. Pérez, F. Biosca, I. Pagan, R. Ortiz, J.
Prieto and E. Villanova for their excellent work.
N
S
N
S
tBu
Cl
S
Cl
N
Cl
References and notes
22
23
24
a
1. Braman, S. S. Chest 2006, 130, 4S.
Compd
LTD4 binding IC50 (nM)
Inhibition of LTD4 extravasationb
2. (a) Bailey, J. M. Prostaglandins, Leukotrienes, and Lipoxins: Biochemistry,
Mechanism of Action, and Clinical Applications; Plenum Press: New York, 1985;
(b) Frank, A. K. Nat. Immunol. 2008, 9, 113.
3. Busse, W.; Kraft, M. Chest 2005, 127, 1312.
4. Rodger, I. W. Am, J. Respir. Crit. Care Med. 2000, 161, S7.
5. (a) Zhang, M.-Q.; Timmerman, H. Inflamm. Res. 1997, 46, 593; (b) Ruck, L. M.;
Rizzo, C. A.; Anthes, J. C.; Eckel, S.; Egan, R. W.; Cuss, F. M.; Hey, J. A. Life Sci.
2001, 68, 2825.
1
16 (6)
72 (0.1); 100 (1)
42 (0.1); 100 (1)
0 (0.1); 86 (1)
58 (0.1); 97 (1)
18
19
20
21
22
23
24
3.4 (2.2)
21 (6.8)
1.7 (0.5)
1.0 (0.4)
37 (9)
48 (0.03); 96 (0.1); 100 (1)
—
—
—
112 (52)
50 (29)
6. Hörlein, U. Chem. Ber. 1954, 87, 463.
7. (a) Zwaagstra, M. E.; Schoenmakers, S. H. H. F.; Nederkoorn, P. H. J.; Gelens,
E.; Timmerman, H.; Zhang, M.-Q. J. Med. Chem. 1998, 41, 1439; (b) Palomer,
A.; Pascual, J.; Cabré, F.; Garcia, M.-L.; Mauleón, D. J. Med. Chem. 2000, 43,
392.
a,b
See footnotes at Table 1.
8. Other indole anti LTD4 series have been described hitherto: (a) Matassa, V. G.;
Maduskuie, T. P.; Shapiro, H. S.; Hesp, B.; Snyder, D. W. J. Med. Chem. 1990, 33,
1781; (b) Boot, J. R.; Bond, A.; Thomas, K. H.; O’Brien, A.; Gilmore, J.; Todd, A.
Eur. J. Pharmacol. 1993, 231, 83; (c) Sawyer, J. S.; Thrasher, K. J.; Bach, N. J.;
Stengel, P. W.; Cockerham, S. L.; Silbaugh, S. A.; Roman, C. R.; Froelich, L. L.;
Fleisch, J. H. Bioorg. Med. Chem. Lett. 1996, 6, 249; (d) Merschaert, A.; Boquel, P.;
Van Hoeck, J.-P.; Gorissen, H.; Borghese, A.; Bonnier, B.; Mockel, A.; Napora, F.
Org. Process Res. Dev. 2006, 10, 776. and references cited therein.
9. In the case of the isomeric fluoro derivatives 28 and 30 the separation was
achieved through chromatography on silica gel of the mixture of the
corresponding amino antecedents 4 using a mixture of CH2Cl2/MeOH/NH4OH
(40:2.5:0.1).
Table 6
Binding and oral activities for some phenyl-substituted c-carbolines (1, 21, 25–30)
R1
R2
9
CO2H
8
1
H
7«-Cl
N
R1
R2
6«
7«
25 6-OEt 7«-Cl
26 7-OMe 7«-Cl
27 8-OMe 7«-Cl
7
N
6
N
21
H
6«,7«-diF
28 7-F 6«,7«-diF
29 8-F 6«,7«-diF
30 9-F 6«,7«-diF
10. The assays were performed using guinea-pig lung membranes as a source of
receptors and [3H]LTD4 from NEN in a modification of the previously described
method (Aharony D.; Falcone, R. C.; Krell, R. D. J. Pharmacol. Exp. Ther. 1987,
Compd
Inhibition of LTD4 extravasationb
a
243, 921). The assay mixture contained 200
final volume of 10 mM PIPES pH 7.5 containing 10 mM CaCl2, 50 mM NaCl,
2 mM
-cysteine, 2 mM Glycine and 300 pM [3H]LTD4. Non specific binding
was determined in the presence of zafirlukast 10 M. The assays were directly
performed on GF/B Millipore Multiscreen 96 well plates, pre-soaked with
200 l/well of assay buffer, filtered, washed three times with 175 l of 10 mM
lg of membranes per assay in a
LTD4 binding IC50 (nM)
1
16 (6)
150 (74)
16 (5)
7.5 (2,5)
1.0 (0.1)
4.5 (3.4)
2.5 (0.6)
1.2 (0.8)
72 (0.1); 100 (1)
L
25
26
27
21
28
29
30
—
l
29 (0.1); 53 (1)
45 (0.1); 74 (1)
l
l
TRIS buffer pH 7.5 containing 100 mM NaCl at 4 °C, dried and read in a TRILUX
Microbeta Counter of Wallac.
0.04
0.05
0.07
0.02
11. Male Dunkin–Hartley guinea-pigs were administered with the test compounds
by oral gavage at the indicated time-points before being anesthetized. Then,
the left jugular vein was cannulated and the animals received the Evans blue
dye intravenously. After 5 min, LTD4 was administered to the animals in order
to induce airway microvascular leakage. After another period of 5 min, animals
were exsanguinated and the vascular bed was rinsed. Then the trachea was
excised and incubated in formamide for 20 h at 55 °C to extract the Evans blue
dye from the tissue. Microvascular permeability was determined by light
spectrophotometry at 620 nm. The number of animals was 6 per dose or 8 in
the case of the complete dose–response curve.
a
See footnotes at Table 1.
% Inhib (dose mg/kg) or ED50, mg/kg.
b
shows a 47% of bioavailability, an intermediate value between the
63% for montelukast and the 25% for zafirlukast.
In conclusion, we have developed a SAR around the tetrahyd-
rocarbazole scaffold, which led to the selection of compound 21.
Further studies will provide a better understanding of its long term
efficacy and potential for human treatment.
12. Inter alia, see: (a) Iwasaki, N.; Sakaguchi, J.; Ohashi, T.; Takahara, E.; Ogawa, N.;
Yasuda, S.; Koshinaka, E.; Kato, H.; Ito, Y.; Sawanishi, H. Chem. Pharm. Bull.
1994, 42, 2276; (b) Iwasaki, N.; Sakaguchi, J.; Ohashi, T.; Yamazaki, M.; Ogawa,
N.; Yasuda, S.; Koshinaka, E.; Kato, H.; Ito, Y.; Sawanishi, H. Chem. Pharm. Bull.
1994, 42, 2285.