4138
I.-J. Kang et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4134–4138
Table 3
role in activity. Replacement of the phenyl ring (25) by a naphthyl
Anti-HCV activity and cytotoxicity for indolines 21–24
(44) or a heterocycle (45–51) resulted in slightly improved or re-
duced activity. The 2-furyl (45) and 2-thienyl (47) analogues were
more active than their 3-furyl (46) and 3-thienyl (48) isomers, but
were also somewhat more cytotoxic. The most potent inhibitor 31
from this SAR study was selected for further development of anti-
HCV agents.
4
5
R
O
6
N
7
S
HN
O
In conclusion, we have developed an efficient synthetic
methodology to provide indole-1-carbothioic acid amide, 2,3-dihy-
dro-indole-1-carbothioic acid amide, and 3,4-dihydro-2H-quino-
line-1-carbothioic acid amide that could be useful for preparing
conformationally restricted novel HCV inhibitors. Incorporation
of an aromatic acyl group at the NH2 of the thiourea moiety has
been found to enhance inhibitory activity. Substitution at the 4-po-
sition of the indoline was preferred over the 5, 6, and 7-positions.
In addition, the chain length of the alkyl group also influences anti-
HCV activity. The indoline scaffold is clearly favored over the
corresponding indole and tetrahydroquinoline scaffolds and is a
novel chemotype for further exploration of anti-HCV drugs.
SIb
a
a
Compound
R
1b EC50
(
lM)
CC50
>50
(lM)
21
22
23
24
4-CH2Ph
5-CH2Ph
6-CH2Ph
7-CH2Ph
3.18 0.36
4.81 0.27
5.05 0.93
>50
>16
9
9
45.21 2.63
43.80 1.48
>50
>1
a
Mean of triplicate well values. All experiments were performed at least twice.
In vitro selectivity index (CC50/EC50).
b
Table 4
Anti-HCV activity and cytotoxicity for indolines 25 and 27–51
Acknowledgment
Cl
We gratefully acknowledge the financial support of the National
Health Research Institutes in Taiwan (ROC).
O
O
References and notes
N
NH
1. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M.
Science 1989, 244, 359.
2. (a) Simmonds, P.; Holmes, E. C.; Cha, T. A.; Chan, S. W.; McOmish, F.; Irvine, B.;
Beall, E.; Yap, P. L.; Kolberg, J.; Urdea, M. S. J. Gen. Virol. 1993, 74, 2391; (b)
Simmonds, P. J. Hepatol. 1999, 31, 54; (c) Simmonds, P. J. Gen. Virol. 2004, 85,
3173.
S
R
O
SIb
a
a
Compound
R
1b EC50
(l
M)
CC50 (lM)
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Ph
0.79 0.14
1.65 0.33
0.58 0.12
0.72 0.21
0.57 0.09
0.51 0.15
0.95 0.28
0.69 0.18
0.88 0.16
1.23 0.43
1.94 0.19
2.02 0.61
1.95 0.53
42.37 1.83
13.36 0.79
31.58 1.65
25.39 1.23
42.47 2.57
2.16 0.56
0.58 0.15
1.72 0.23
0.66 0.08
1.02 0.18
2.37 0.24
2.06 0.17
1.1 0.07
>50
>50
12.13 1.18
13.62 1.45
9.75 0.86
>50
31.11 2.56
21.71 1.43
29.08 1.78
32.69 1.67
>50
34.42 1.48
>50
>50
>50
>50
>50
>50
>50
4.62 0.63
20.06 1.35
10.66 0.95
>50
11.1 0.86
37.08 1.83
>50
>63
>30
21
19
17
>98
33
31
33
27
>26
17
>26
>1
>4
>2
>2
>1
>23
8
12
3. World Health Organization. J. Viral Hepat. 1999, 6, 35.
2-NO2-Ph
3-NO2-Ph
4-NO2-Ph
3-CN-Ph
4-CN-Ph
4-F-Ph
4. (a) Cuthbert, J. A. J. Clin. Microbiol. Rev. 1994, 7, 505; (b) El-Serag, H.; Mason, A.
Arch. Int. Med. 2000, 160, 3227; (c) Bartenschlagar, R. Antiviral Chem. Chemother.
1997, 8, 281; (d) Dymock, B. W. Emerg. Drugs 2001, 6, 13; (e) Dymock, B. W.;
Jones, P. S.; Wilson, F. X. Antiviral Chem. Chemother. 2000, 11, 79; (f) Hoofnagle,
J. H.; Di Bisceglie, A. M. N. Engl. J. Med. 1997, 336, 347; (g) Hoofnagle, J. H.
Hepatology 2002, 36, S21; (h) Seeff, L. B. Hepatology 2002, 36, S35; (i) Pawlotsky,
J. M. Currr. Opin. Infect. Dis. 2003, 16, 587.
4-Cl-Ph
4-Br-Ph
4-CF3-Ph
4-Me-Ph
4-MeO-Ph
4-t-Bu-Ph
4-N(CH3)2-Ph
CH2CH2Ph
CH2CH2CH3
Cyclopentyl
Cyclohexyl
2-Naphthyl
2-Furyl
3-Furyl
2-Thienyl
3-Thienyl
3-Pyridyl
5-Isoxazolyl
2-Benzothienyl
5. Boyer, N.; Marcellin, P. J. Hepatol. 2000, 32, 98.
6. (a) Abrignani, S.; Houghton, M.; Hsu, H. H. J. Hepatol. 1999, 31, 259; (b) Prince,
A. M.; Shata, M. T. Clin. Liver Dis. 2001, 5, 1091; (c) Forns, X.; Payette, P. J.; Ma,
X.; Satterfield, W.; Eder, G.; Mushahwar, I. K.; Govindarajan, S.; Davis, H. L.;
Emerson, S. U.; Purcell, R. H.; Bukh, J. Hepatology 2000, 32, 618.
7. (a) Hoofnagle, J. H.; Seeff, L. B. N. Engl. J. Med. 2006, 355, 2444; (b) Zoulim, F.;
Chevallier, M.; Maynard, M.; Trepo, C. Rev. Med. Virol. 2003, 13, 57; (c) Manns,
M. P.; McHutchison, J. G.; Gordon, S. C.; Rustgi, V. K.; Shiffman, M.; Reindollar,
R.; Goodman, Z. D.; Koury, K.; Ling, M.; Albrecht, J. K. Lancet 2001, 358, 958; (d)
McHutchinson, J. G.; Gordon, S. C.; Schiff, E. R.; Shiffman, M. L.; Lee, W. M.;
Rustgi, V. K.; Goodman, Z. D.; Ling, M. H.; Cort, S.; Albrecht, J. K. N. Eng. J. Med.
1998, 339, 1485.
8. The cell-based HCV subgenomic replicon assay was frequently used to look for
inhibitors that interact with any components of HCV replication complex and
impair HCV viral replication. In contrast, enzyme-based biochemical assay was
usually aimed to look for inhibitors against one specific viral target of HCV
replication complex: Lee, J. C.; Chang, C. F.; Chi, Y. H.; Hwang, D. R.; Hsu, J. T. A.
J. Virol. Methods 2004, 116, 27.
16
>49
5
18
>45
9. Kang, I. J.; Wang, L. W.; Lee, C. C.; Lee, Y. C.; Chao, Y. S.; Hsu, T. A.; Chern, J. H.
Bioorg. Med. Chem. Lett. 2009, 19, 1950.
10. Nose, A.; Kudo, T. Chem. Pharm. Bull. 1984, 32, 2421.
a
Mean of triplicate well values. All experiments were performed at least twice.
In vitro selectivity index (CC50/EC50).
b
11. Zhang, M.; Dally, R.; Bullock, W. Synth. Commun. 2004, 34, 4023.
12. (a) Gribble, G. W.; Lord, P. D.; Skotnicki, J.; Dietz, S. E.; Eaton, J. T.; Johnson, J. L.
J. Am. Chem. Soc. 1974, 96, 7812; (b) Gribble, G. W.; Hoffman, J. H. Synthesis
1977, 859; (c) Edwards, J. P.; West, S. J.; Pooley, C. L. F.; Marschke, K. B.; Farmer,
L. J.; Jones, T. K. Bioorg. Med. Chem. Lett. 1998, 8, 745; (d) Baran, P. S.; Guerrero,
C. A.; Hafensteiner, B. D.; Ambhaikar, N. B. Angew. Chem., Int. Ed. 2005, 44, 3892.
13. (a) Muthusamy, S.; Paramasivam, R. J. Heterocycl. Chem. 1991, 28, 759; (b) Yang,
Y.; Martin, A. R.; Nelson, D. L.; Regan, J. Heterocycles 1992, 34, 1169.
14. (a) Mcfarland, J. W.; Houser, R. W. J. Org. Chem. 1968, 33, 340; (b) Dickore, K.;
Kuhle, E. Angew. Chem., Int. Ed. Engl. 1965, 4, 430; (c) Gompper, R.; Haegele, W.
Chem. Ber. 1966, 99, 2885.
lar, compound 31 proved to be more potent than the unsubstituted
compound 25 with a selectivity index of greater than 98. All other
4-substituted analogues (32–39) showed similar or slightly
reduced activity, with the exception of the 4-dimethylamino ana-
logue 39, which resulted in a considerable loss of activity. Intro-
duction of an ethylene linker (40) between the carbonyl group
and the phenyl ring showed a decrease in potency. Replacing the
phenyl ring (25) of the benzoyl moiety by an n-propyl (41) or a
cycloalkyl group (42, 43) dramatically decreased the activity. These
findings indicate that the aromatic ring seems to play an important
15. (a) Wyles, D. L.; Kaihara, K. A.; Schooley, R. T. Antimicrob. Agents Chemother.
2008, 52, 1862; (b) Yang, W.; Zhao, Y.; Fabrycki, J.; Hou, X.; Nie, X.; Sanchez, A.;
Phadke, A.; Deshpande, M.; Agarwal, A.; Huang, M. Antimicrob. Agents
Chemother. 2008, 52, 2043.