X.-J. Meng et al. / Tetrahedron Letters 50 (2009) 4983–4985
4985
OH
Taking into account the convenient chemical transformation of
Diels–Alder adduct 23 and
-butenolide moiety,3a we believe that
OH
c
our method would be of great benefit to the synthesis of other nat-
urally occurring C12 oxygenated scalaranes, such as sesterstatins,
hyatolides, heteronemins, and scalarafurans, which have hitherto
been beyond the reach of chemical synthesis. Investigation is cur-
rently to further improve the stereoselectivity of Diels–Alder addi-
tion, and to elaborate the attractive intermediate 23 toward
scalarafurans and other biologically active compounds in our
laboratory.
MePPh3Br, n-BuLi, THF
0 oC-r.t., 8 h, 79%
CHO
17
18
O
OH
NaBH4, CeCl3 7H2O
0 OC, 1h, 95%
PDC, CH2Cl2
r.t., 4h, 96%
Acknowledgments
This work was financially supported by the National Marine
863 Project (Grant 2006AA09Z447), the Shanghai Committee of
Science and Technology (No. 06PJ14023), the New Century Excel-
lent Talents in University, the Ministry of Education, China (No.
NCET-07-0283) and ’111’ Project (No. B07023).
19
20
Scheme 3.
OH
OBn
Supplementary data
NaH, BnBr, THF
The copies of 1H, 13C NMR spectra of key intermediates 22 and
23, final product 1 and authentic natural scalarolide.2b Supplemen-
tary data associated with this article can be found, in the online
0 oC-r.t. overnight, 96%
20
21
OBn CO2Me
OBn CO2Me
CO2Me
References and notes
CO2Me
DMAD, 110 oC, N2,
sealed tube
1. (a) Liu, Y.; Wang, L.; Jung, J. H.; Zhang, S. Nat. Prod. Rep. 2007, 24, 1401; (b)
Faulkner, D. J. Nat. Prod. Rep. 1997, 14, 259. and references cited therein.
2. (a) Rueda, A.; Zubia, E.; Ortega, M. J.; Carballo, J. L.; Salvá, J. J. Org. Chem. 1997,
62, 1481; (b) Youssef, D. T. A.; Yamaki, R. K.; Kelly, M.; Scheuer, P. J. J. Nat. Prod.
2002, 65, 2; (c) Hernández-Guerrero, C. J.; Zubía, E.; Ortega, M. J.; LuisCarballo,
J. Tetrahedron 2006, 62, 5392.
+
24 h, 78%
22 (52%)
(26%)
23
3. (a) Walker, R. P.; Thompson, J. E.; Faulkner, D. J. J. Org. Chem. 1980, 45, 4976; (b)
Terem, B.; Scheuer, P. J. Tetrahedron 1986, 42, 4409.
4. Kikuchi, H.; Tsukitani, Y.; Shimizu, I.; Kobayashi, M.; Kitagawa, I. Chem. Pharm.
Bull. 1983, 31, 552.
5. Kazlauskas, R.; Murphy, P. T.; Wells, R. J. Aust. J. Chem. 1982, 35, 51.
6. Youssef, D. T. A.; Shaala, L. A.; Emara, S. J. Nat. Prod. 2005, 68, 1782.
7. Pettit, G. R.; Tan, R.; Cichacz, Z. A. J. Nat. Prod. 2005, 68, 1253.
8. Ledroit, V.; Debitus, C.; Ausseil, F.; Raux, R.; Menou, J.-L.; Hill, B. T. Pharm. Biol.
2004, 42, 454.
O
O
OBn
O
O
OH
from 23
10% Pd/C, H2
CH3OH, r.t.
LiAlH4 (0.75 eq.)
Et2O, reflux, 1h
88%
8 h, 92%
9. Pettit, G. R.; Tan, R.; Melody, N.; Cichacz, Z. A.; Herald, D. L.; Hoard, M. S.; Pettit,
R. K.; Chapuis, J.-C. Biorg. Med. Chem. Lett. 1998, 8, 2093.
24
1
10. Review for the synthetic paths towards scalaranes: Ungur, N.; Kulcißtki, V.
Scheme 4.
Phytochem. Rev. 2004, 3, 401. and references cited therein.
11. Kulcißtki, V.; Ungur, N.; Gavagnin, M.; Castelluccio, F.; Cimino, G. Tetrahedron
2007, 63, 7617.
12. (a) Herz, W.; Prasad, J. S. J. Org. Chem. 1982, 47, 4171; (b) Vlad, P. F.; Ungur, N.;
Nguen, V. T. Russ. Chem. Bull. 1995, 44, 2404; (c) Ungur, N.; Kulcißtki, V.;
Gavagnin, M.; Castelluccio, F.; Vlad, P. F.; Cimino, G. Tetrahedron 2002, 58,
10159.
13. (a) Corey, E. J.; Luo, G.; Lin, L. S. J. Am. Chem. Soc. 1997, 119, 9927; (b) Grinco, M.;
Kulcißtki, V.; Ungur, N.; Jankowski, W.; Chojnacki, T.; Vlad, P. F. Helv. Chim. Acta
2007, 90, 1223.
14. (a) Nakano, T.; Hernández, M. I. J. Chem. Soc., Perkin Trans. 1 1988, 1349; (b)
Abad, A.; Agullo, C.; Castelblanque, L.; Cunat, A. C.; Navarro, I.; Ramirez de
Arellano, M. C. J. Org. Chem. 2000, 65, 4189.
15. (a) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende, A. S. J. Org. Chem. 2003, 68, 7422;
(b) Kende, A. S.; Deng, W.-P.; Zhong, M.; Guo, X.-C. Org. Lett. 2003, 5, 1785.
16. Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D. Tetrahedron 1972, 28, 5993.
17. (a) Urones, J. G.; Marcos, I. S.; Basabe, P.; Gomez, A.; Estrella, A.; Lithgow, A. M.
Nat. Prod. Lett. 1994, 5, 217; (b) Bolster, M. G.; Jansen, B. J. M.; de Groot, A.
Tetrahedron 2001, 57, 5663; (c) Ungur, N.; Gavagnin, M.; Fontana, A.; Cimino, G.
Tetrahedron 2000, 56, 2503.
22 in 52% yield and desired 23 in 26% yield. The 2D NOESY spectra
of 22 and 23 established the above stereochemical assignment due
to an obvious crosspeak between newly formed angular methyl
group and the axial proton at C12 for 22, while the absence of such
a crosspeak for 23. This stereochemical result is different from that
of previous report.14b LAH (0.75 equiv) reduction of adduct 23 in
ether at reflux temperature resulted in highly regioselective
reduction of less hindered methyl ester group, and spontaneous
lactonization smoothly afforded
one-pot process of regioselective construction of
c
-butenolide 24 in 88% yield. This
-butenolide
c
moiety is superior to that of previously reported synthetic route
of (+)-12-deoxyscalarolide.18 Further hydrogenation of 24 using
10% Pd/C accomplished the synthesis of scalarolide 1 in 92% yield.
Comparisons of specific optical rotation (½a D18
ꢀ
+23.6, c 0.13, CH2Cl2
18. Ragoussis, V.; Liapis, M.; Ragoussis, N. J. Chem. Soc., Perkin Trans. 1 1990, 2545.
19. Data for 1: white solid, mp >300 °C; ½a D18
ꢀ
+23.6 (c 0.13, CH2Cl2); IR (KBr, m,
versus (½a 2D5
ꢀ
+24.9, c 0.15, CH2Cl2 of lit.2b), 1H NMR, 13C NMR and
cmꢁ1): 3393.0, 2928.7, 1711.3, 1442.2, 1387.3, 1060.8; 1H NMR (400 MHz,
CDCl3) d 5.94 (s, 1H), 4.75–4.65 (m, 2H), 3.67 (dd, J = 5.2, 10.9, 1H), 2.48–2.18
(m, 2H), 1.97–1.25 (m, 12H), 1.13 (s, 3H), 1.12–1.05 (m, 2H), 0.90 (s, 3H), 0.86
(s, 6H), 0.82 (s, 3H), 0.95–0.75 (m, 3H); 13C NMR (100 MHz, CDCl3) d 176.0,
162.1, 135.9, 75.6, 72.1, 58.0, 56.7, 55.2, 42.2, 42.1, 41.7, 39.7, 37.4, 37.3, 33.3,
31.0, 25.8, 25.3, 21.3, 18.6, 18.3, 17.2, 16.8, 16.5, 16.0; HRMS (ESI) calcd for
HRMS data of our synthetic 1 established the structural identity
with the natural (+)-scalarolide isolated by Youssef2b and Faulk-
ner3a reported to be structure 1.
In summary, we have finished the first synthesis of marine
C25H39O3 [M+H]+ 387.2899, found 387.2896.
(+)-scalarolide 1 in 19 steps of reaction in an overall of 4.4% yield.19
þ