the encapsulating shell playing an active role in assisting HCl
transport. We suggest that such simple compounds may
have interesting membrane-transport abilities and intriguing
biological activities.
We thank EPSRC and The University of York for financial
support of this research.
Notes and references
1 (a) S. Ohkuma, T. Sato, M. Okamoto, H. Matsuya, K. Arai,
T. Kataoka, K. Naga and H. H. Wasserman, Biochem. J., 1998,
334, 731–741; (b) A. Furstner, Angew. Chem., Int. Ed., 2003, 42,
3582–3603; (c) J. L. Seganish and J. T. Davis, Chem. Commun.,
2005, 5781–5783.
2 V. Sidorov, F. W. Kotch, G. Abdrakhmanova, R. Mizani,
J. C. Fettinger and J. T. Davis, J. Am. Chem. Soc., 2002, 124,
2267–2278.
Fig. 3 U-tube transport results for HCl transport illustrating the pH
change in the right-hand-arm of the apparatus over time. Circles
represent no receptor, triangles represent Et3N. Squares represent
receptor 1 and diamonds receptor 2.
3 J. L. Sessler, L. R. Eller, W.-S. Cho, S. Nicolaou, A. Aguilar,
J. T. Lee, V. M. Lynch and D. J. Magda, Angew. Chem., Int. Ed.,
2005, 44, 5989–5992.
4 (a) P. A. Gale, M. E. Light, B. McNally, K. Navakhun,
K. E. Sliwinski and B. D. Smith, Chem. Commun., 2005,
3773–3775; (b) P. A. Gale, J. Garric, M. E. Light,
B. A. McNally and B. D. Smith, Chem. Commun., 2007,
1736–1738; (c) P. V. Santacroce, J. T. Davis, M. E. Light,
P. A. Gale, J. C. Iglesias-Sanchez, P. Prados and R. Quesada,
J. Am. Chem. Soc., 2007, 129, 1886–1887; (d) J. T. Davis,
P. A. Gale, O. A. Okunola, P. Prados, J. C. Iglesias-Sanchez,
T. Torroba and R. Quesada, Nat. Chem., 2009, 1, 138–144.
5 I. Izzo, S. Licen, N. Maulucci, G. Autore, S. Marzocco, P. Tecilla
and F. De Riccardis, Chem. Commun., 2008, 2986–2988.
6 (a) H. F. M. Nelissen and D. K. Smith, Chem. Commun., 2007,
3039–3041; (b) K. J. Winstanley, A. M. Sayer and D. K. Smith,
Org. Biomol. Chem., 2006, 4, 1760–1767; (c) D. K. Smith, Org.
Biomol. Chem., 2003, 1, 3874–3877.
Fig. 4 U-tube transport results for HCl transport illustrating the pH
change in the right-hand-arm of the apparatus over time. Circles
represent no receptor. Receptors are represented by plus signs (3),
crosses (4), dashes (5), diamonds (6), squares (7) and triangles (8).
7 See for example: (a) S. Valiyaveettil, J. F. L. Engbersen,
W. Verboom and D. N. Reinhoudt, Angew. Chem., Int. Ed. Engl.,
1993, 32, 900–901; (b) C. Raposo, M. Almaraz, M. Martin,
V. Weinreich, M. L. Mussons, V. Alcazar, M. C. Caballero and
J. R. Moran, Chem. Lett., 1995, 759–760; (c) P. D. Beer,
P. K. Hopkins and J. D. McKinney, Chem. Commun., 1999,
1253–1254; (d) F. Werner and H.-J. Schneider, Helv. Chim. Acta,
2000, 83, 465–478; (e) C. E. Stanley, N. Clarke, K. M. Anderson,
J. A. Elder, J. T. Lenthall and J. W. Steed, Chem. Commun., 2006,
3199–3201.
8 (a) J. M. Boon and B. D. Smith, J. Am. Chem. Soc., 1999, 121,
11924–11925; (b) Y. Sasaki, R. Shukla and B. D. Smith, Org.
Biomol. Chem., 2004, 2, 214–219.
9 (a) P. D. Beer, A. R. Graydon, A. O. M. Johnson and D. K. Smith,
Inorg. Chem., 1997, 36, 2112–2118; (b) K. Navakhun, P. A. Gale,
S. Camiolo, M. E. Light and M. B. Hursthouse, Chem. Commun.,
2002, 2084–2085.
slowly transport HCl, although the rate was significantly lower
(Fig. 4, diamonds). This clearly demonstrates that those HCl
receptors with a greater degree of core encapsulation are
more effective transporters—irrespective of the inherent HCl
binding affinity. This is in agreement with the observation that
both receptors 1 and 2 transport HCl, even though they have
different HCl affinities. We propose that the enhanced HCl
transport exhibited by the more encapsulated receptors is a
consequence of their ability to effectively shield the bound HCl
from the apolar environment, coupled with the preference of
these less polar receptors to remain within the apolar phase.
These observations are in agreement with the hypothesis
that the best transport agents do not necessarily have the
highest affinities for the target—a degree of binding is required
in order to facilitate transport, but most importantly, the
receptor must screen the ions being transported from the
surrounding apolar phase and then release the ions once
transport is complete.15
10 P. S. Lakshminarayanan, E. Suresh and P. Ghosh, Inorg. Chem.,
2006, 45, 4372–4380.
11 (a) P. D. Beer, F. Szemes, V. Balzani, C. M. Sala, M. G. B. Drew,
S. W. Dent and M. Maestri, J. Am. Chem. Soc., 1997, 119,
11864–11875; (b) K.-Y. Ng, A. R. Cowley and P. D. Beer, Chem.
Commun., 2006, 3676–3678; (c) L. M. Hancock and P. D. Beer,
Chem.–Eur. J., 2009, 15, 42–44.
In summary, this paper reports synthetically simple
receptors with encapsulated binding sites, which have high
affinities for HCl. These compounds can be considered as
synthetic prodigiosin mimics. Receptor 1, with its binding site
encapsulated within an aromatic ether shell, has the highest
affinity both for TBACl and HCl—we propose that this
is a consequence of favourable interactions/environment
between the organic shell and the bound chloride anion. We
demonstrate that well-encapsulated tren-amide binding sites
can be used to transport HCl through an apolar phase, with
12 P. de Hoog, P. Gamez, I. Mutikainen, U. Turpeinen and
J. Reedijk, Angew. Chem., Int. Ed., 2004, 43, 5815–5817.
´
13 C. J. Hawker, K. L. Wooley and J. M. J. Frechet, J. Am. Chem.
Soc., 1993, 115, 4375–4376.
14 (a) C. A. Ilioudis, K. S. B. Hancock, D. G. Georganopoulou and
J. W. Steed, Chem. Commun., 2000, 787–798; (b) S. O. Kang,
J. M. Llinares, D. Powell, D. VanderVelde and K. Bowman-James,
J. Am. Chem. Soc., 2003, 125, 10152–10153; (c) C. A. Ilioudis,
D. A. Tocher and J. W. Steed, J. Am. Chem. Soc., 2004, 126,
12395–12402.
15 A. P. Davis, D. N. Sheppard and B. D. Smith, Chem. Soc. Rev.,
2007, 36, 348–357.
ꢂc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4299–4301 | 4301