Self-Association and Electron Transfer in D-A Dyads
A R T I C L E S
donor-acceptor assemblies connected by hydrogen-bonding
arrays3a,b or coordinative metal bonds3c,d have been exploited
in the quest for long-lived charge-separated states. However,
detailed studies on charge transfer interactions in supramolecular
assemblies held together by means of π-π aromatic interactions
are yet scarce, despite their implication in naturalscharge
transport through DNA bases4a-csor artificialscharge transport
in the active layer of photovoltaic devices2,4d,essystems. An
important requisite for these studies involves the connection of
appropriate donor (D) and acceptor (A) moieties by bridges (B’s)
of different natures. Conjugates prepared by the combination
of a variety of electron donor fragments, such as ferrocenes5 or
porphyrins,6 and electron acceptor units, for instance, peryle-
nebisimides,7 have been utilized to investigate electron transfer
processes in D-B-A conjugates upon light irradiation. In our
research group, we have described a number of conjugates in
which the electron donor is 2-[9-(1,3-dithiol-2-ylidene)anthra-
cen-10(9H)-ylidene]-1,3-dithiole (exTTF)8 and the electron
acceptor unit is [60]fullerene,9 connected by different covalent
or supramolecular spacers.10 Very recently, we have reported
on the formation of supramolecular complexes from concave
exTTF-based pincerlike receptors and the convex C60 surface
in a positive homotropic cooperative manner.11 These complexes
experience an electron transfer through the π-π stacking
interactions that hold together some of these tweezers with C60
to form the corresponding supramolecular radical pair.12
In this paper we report on the synthesis and redox properties
of a new family of D-B-A conjugates in which D is an exTTF
fragment,8 A is C60, and the B groups are m-phenyleneethy-
nylene oligomers of different lengths. We have chosen this class
of spacer (i) because it is known that the promotion of an
electron from the D to the A is favored in the excited state in
only one way but not in the reverse one, that is, the charge
recombination would be unfavored,13 and (ii) because of the
well-documented ability of m-phenyleneethynylenes to switch
from random conformations in chlorinated solvents to helical
arrangements in polar solvents due to the influence of solvo-
phobic effects.14 This situation allows us to study the compe-
tence between inter- or intramolecular electron transfer pro-
cesses. Unexpectedly, these new hybrids self-associate by π-π
aromatic interactions to form aggregates as has been demon-
strated by mass spectrometry, 1H NMR experiments at different
concentrations, and atomic force microscopy (AFM) imaging.
Photophysical studies reveal the strong impact of the meta
substitution on the photophysical properties for these new
conjugates in comparison with our previous results reported for
their para-conjugated congeners15 as well as the concentration
dependence of these properties as a consequence of the self-
assembly process.
Results and Discussion
Synthesis. The synthesis of the final hybrids 5, 10, 13, and
16 was carried out by stepwise approaches based on the
preparation of asymmetrically functionalized π-conjugated
oligo(m-phenyleneethynylene) (OMPE) spacers of different
lengths endowed with a formyl group and exTTF at the terminal
positionsscompounds 4, 9, 12, and 15 in Schemes 1 and 2.
The preparation of the corresponding oligo(m-phenyleneethy-
nylene) building blocks was performed by using Pd-catalyzed
cross-coupling reactions between derivatized arylacetylenes and
aryl halides.16
(4) (a) Elias, B.; Genereux, J. C.; Barton, J. K. Angew. Chem., Int. Ed.
2008, 47, 9067–9070. (b) Giese, B. Bioorg. Med. Chem. 2006, 14,
6139–6143. (c) Conwell, E. M. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 8795–8799. (d) Mynar, J. L.; Yamamoto, T.; Kosaka, A.;
Fukushima, T.; Ishii, N.; Aida, T. J. Am. Chem. Soc. 2008, 130, 1530–
1531. (e) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki,
A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science
2006, 314, 1761–1764.
The synthesis of 3-ethynylbenzaldehyde (2b), an intermediate
compound necessary for the preparation of dyad 5, was carried
out by using Sonogashira cross-coupling reaction (Pd/Cu
(5) (a) Gonza´lez-Rodr´ıguez, D.; Torres, T.; Olmstead, M. M.; Rivera, J.;
Herranz, M. A.; Echegoyen, L.; Atienza Castellanos, C.; Guldi, D. M.
J. Am. Chem. Soc. 2006, 128, 10680–10681. (b) Jeon, W. S.; Moon,
K.; Park, S. H.; Chun, H.; Ko, Y. H.; Lee, J. Y.; Lee, E. S.; Samal,
S.; Selvapalam, N.; Rekharsky, M. V.; Sindelar, V.; Sobransingh, D.;
Inoue, Y.; Kaifer, A. E.; Kim, K. J. Am. Chem. Soc. 2005, 127, 12984–
12989.
(11) (a) Pe´rez, E. M.; Sa´nchez, L.; Ferna´ndez, G.; Mart´ın, N. J. Am. Chem.
Soc. 2006, 128, 7172–7173. (b) Pe´rez, E. M.; Sierra, M.; Sa´nchez,
L.; Torres, M. R.; Viruela, R.; Viruela, P. M.; Ort´ı, E.; Mart´ın, N.
Angew. Chem., Int. Ed. 2007, 46, 1847–1851. (c) Ferna´ndez, G.; Pe´rez,
E. M.; Sa´nchez, L.; Mart´ın, N. Angew Chem., Int. Ed. 2008, 47, 1094–
1097. (d) Ferna´ndez, G.; Pe´rez, E. M.; Sa´nchez, L.; Mart´ın, N. J. Am.
Chem. Soc. 2008, 130, 2410–2411. (e) Ferna´ndez, G.; Sa´nchez, L.;
Pe´rez, E. M.; Mart´ın, N. J. Am. Chem. Soc. 2008, 130, 10674–10683.
(12) Gayathri, S. S.; Wielopolski, M.; Pe´rez, E. M.; Ferna´ndez, G.; Sa´nchez,
L.; Viruela, R.; Ort´ı, E.; Guldi, D. M.; Mart´ın, N. Angew. Chem., Int.
Ed. 2009, 48, 815–819.
(6) (a) D’Souza, F.; Chitta, R.; Sandanayaka, A. S. D.; Subbaiyan, N. K.;
D’Souza, L.; Araki, Y.; Ito, O. J. Am. Chem. Soc. 2007, 129, 15865–
15871. (b) Li, W.-S.; Kim, K. S.; Jiang, D.-L.; Tanaka, H.; Kawai,
T.; Kwon, J. H.; Kim, D.; Aida, T. J. Am. Chem. Soc. 2006, 128,
10527–10532. (c) Imahori, H.; Sekiguchi, Y.; Kashiwagi, Y.; Sato,
T.; Araki, Y.; Ito, O.; Yamada, H.; Fukuzumi, S. Chem.sEur. J. 2004,
10, 3184–3196. (d) Jiang, D.-L.; Choi, C.-K.; Honda, K.; Li, W.-S.;
Yuzawa, T.; Aida, T. J. Am. Chem. Soc. 2004, 126, 12084–12089.
(7) (a) Zhang, R.; Wang, Z.; Wu, Y.; Fu, H.; Yao, J. Org. Lett. 2008, 10,
3065–3068. (b) Beckers, E. H. A.; Meskers, S. C. J.; Schenning,
A. P. H. J.; Chen, Z.; Wu¨rthner, F.; Marsal, P.; Beljonne, D.; Cornil,
J.; Janssen, R. A. J. J. Am. Chem. Soc. 2006, 128, 649–657. (c) Marcos
Ramos, A.; Meskers, S. C. J.; Beckers, E. H. A.; Prince, R. B.;
Brunsveld, L.; Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126, 9630–
9644.
(13) (a) Thompson, A. L.; Ahn, T.-S.; Thomas, K. R. J.; Thayumanavan,
S.; Martinez, T. J.; Bardeen, C. J. J. Am. Chem. Soc. 2005, 127, 16348–
16349. (b) Gaab, K. M.; Thompson, A. L.; Xu, J.; Martinez, T. J.;
Bardeen, C. J. J. Am. Chem. Soc. 2003, 125, 9288–9289.
(14) (a) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793–1796. (b) Prince, R. B.; Saven, J. G.; Moore, J. S.;
Wolynes, P. G. J. Am. Chem. Soc. 1999, 121, 3114–3121. (c) Lahiri,
S.; Thompson, J. L.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 11315–
11319.
(15) (a) Wielopolski, M.; Atienza, C.; Clark, T.; Guldi, D. M.; Mart´ın, N.
Chem.sEur. J. 2008, 14, 6379–6390. (b) Figueira-Duarte, T. M.;
Ge´gout, A.; Nierengarten, J. F. Chem. Commun. 2007, 109–119. (c)
Atienza, C.; Mart´ın, N.; Wielopolski, M.; Haworth, N.; Clark, T.;
Guldi, D. M. Chem. Commun. 2006, 3202–3204.
(8) (a) Yamashita, Y.; Kobayashi, Y.; Miyashi, T. Angew. Chem., Int.
Ed. Engl. 1989, 28, 1052–1053. (b) Bryce, M. R.; Moore, A. J.; Hasan,
M.; Ashwell, G. J.; Fraser, A. T.; Clegg, W.; Hursthouse, M. B.;
Karaulov, A. I. Angew. Chem., Int. Ed. Engl. 1990, 29, 1450–1452.
(c) Mart´ın, N.; Sa´nchez, L.; Seoane, C.; Ort´ı, E.; Viruela, P. M. J.
Org. Chem. 1998, 63, 1268–1279. (d) Segura, J. L.; Mart´ın, N. Angew.
Chem., Int. Ed. 2001, 40, 1372–1409.
(16) (a) Sonogashira, K. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991. (b) Sono-
gashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998. (c)
Sonogashira, K. J. Organomet. Chem. 2002, 653, 46–49. (d) Eisler,
S.; Chahal, N.; McDonald, R.; Tykwinski, R. R. Chem.sEur. J. 2003,
9, 2542–2550. (e) Mohr, W.; Stahl, J.; Hampel, F.; Galysz, J. A.
Chem.sEur. J. 2003, 9, 3324–3340. (f) Eisler, S.; Slepkov, A. D.;
Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R.
J. Am. Chem. Soc. 2005, 127, 2666–2676.
(9) (a) Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593–
601. (b) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695–703.
(c) Guldi, D. M. Chem. Commun. 2000, 321–327. (d) Mart´ın, N. Chem.
Commun. 2006, 2093–2104.
(10) Mart´ın, N.; Sa´nchez, L.; Herranz, M. A.; Illescas, B. M.; Guldi, D. M.
Acc. Chem. Res. 2007, 40, 1015–1024.
9
J. AM. CHEM. SOC. VOL. 131, NO. 34, 2009 12219