2072
A. Wilsily et al.
SPECIAL TOPIC
1H NMR (CDCl3, 300 MHz): d = 7.19 (d, J = 8.6 Hz, 2 H), 7.15 (d,
J = 8.7 Hz, 2 H), 3.50 (s, 1 H), 2.85 (sept, J = 6.9 Hz, 1 H), 2.24 (dq,
J = 14.3, 7.2 Hz, 1 H), 2.12 (dq, J = 14.1, 7.2 Hz, 1 H), 1.60 (s, 3 H),
1.54 (s, 3 H), 1.19 (d, J = 6.9 Hz, 6 H), 0.80 (t, J = 7.3 Hz, 3 H).
13C NMR (CDCl3, 75 MHz): d = 164.7, 164.2, 147.6, 139.0, 126.9,
126.4, 105.3, 57.1, 46.2, 33.5, 32.5, 29.7, 26.8, 23.8, 22.4, 8.8.
(2) For reviews, see: (a) Thaler, T.; Knochel, P. Angew. Chem.
Int. Ed. 2009, 48, 645. (b) Alexakis, A.; Vuagnoux-
d’Augustin, M.; Martin, D.; Kehrli, S.; Palais, L.; Hénon, H.;
Hawner, C. Chimia 2008, 62, 461. (c) Cozzi, P. G.; Hilgraf,
R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969.
(d) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M.
Synthesis 2007, 1279.
HRMS (EI): m/z calcd for C19H26O4 (M+): 318.1831; found:
(3) Alexakis’ group: (a) Henon, H.; Mauduit, M.; Alexakis, A.
Angew. Chem. Int. Ed. 2008, 47, 9122. (b) Hawner, C.; Li,
K.; Cirriez, V.; Alexakis, A. Angew. Chem. Int. Ed. 2008, 47,
8211. (c) Palais, L.; Mikhel, I. S.; Bournaud, C.; Micouin,
L.; Falciola, C. A.; Vuagnoux-d’Augustin, M.; Rosset, S.;
Bernardinelli, G.; Alexakis, A. Angew. Chem. Int. Ed. 2007,
46, 7462. (d) Vuagnoux-d’Augustin, M.; Kehrli, S.;
Alexakis, A. Synlett 2007, 2057. (e) Vuagnoux-d’Augustin,
M.; Alexakis, A. Chem. Eur. J. 2007, 13, 9647. (f) Martin,
D.; Kehrli, S.; d’Augustin, M.; Clavier, H.; Mauduit, M.;
Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416. (g) Fuchs,
N.; d’Augustin, M.; Humam, M.; Alexakis, A.; Taras, R.;
Gladiali, S. Tetrahedron: Asymmetry 2005, 16, 3143.
(h) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem.
Int. Ed. 2005, 44, 1376. Hoveyda’s group: (i) May, T. L.;
Brown, M. K.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2008,
47, 7358. (j) Brown, M. K.; Hoveyda, A. H. J. Am. Chem.
Soc. 2008, 130, 12904. (k) Brown, M. K.; May, T. L.;
Baxter, C. A.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2007,
46, 1097. (l) Lee, K.; Brown, M. K.; Hird, A. W.; Hoveyda,
A. H. J. Am. Chem. Soc. 2006, 128, 7182. (m) Hird, A. W.;
Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988.
(n) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 4584. Tomioka’s group: (o) Matsumoto,
Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2008, 73, 4578.
(4) (a) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801.
(b) Fillion, E.; Wilsily, A.; Liao, E-T. Tetrahedron:
Asymmetry 2006, 17, 2957. (c) Fillion, E.; Wilsily, A. J. Am.
Chem. Soc. 2006, 128, 2774.
318.1832.
(S)-2,2-Dimethyl-5-[1-methyl-1-(2-naphthyl)propyl]-1,3-diox-
ane-4,6-dione (2k)
Yield: 82%; beige solid; mp 132–134 °C; [a]D –4.8 (c 2.7,
CH2Cl2).
31
An enantiomeric excess of 79% S was measured by chiral HPLC
[AD-H, 1% i-PrOH–hexanes with 0.1% TFA, 1.0 mL/min,
tR1 = 26.0 min (S), tR2 = 39.1 min (R)].
1H NMR (CDCl3, 300 MHz): d = 7.81–7.78 (m, 3 H), 7.70 (s, 1 H),
7.46–7.41 (m, 3 H), 3.71 (s, 1 H), 2.29 (dq, J = 14.2, 7.4 Hz, 1 H),
2.17 (dq, J = 14.1, 7.2 Hz, 1 H), 1.72 (s, 3 H), 1.59 (s, 3 H), 1.14 (s,
3 H), 0.75 (t, J = 7.3 Hz, 3 H).
13C NMR (CDCl3, 125 MHz): d = 164.7, 164.1, 139.7, 133.1, 132.1,
128.2, 127.9, 127.3, 126.1 (2C), 126.0, 124.6, 105.2, 57.2, 46.5,
32.8, 29.4, 27.2, 21.7, 8.8.
HRMS (EI): m/z calcd for C20H22O4 (M+): 326.1518; found:
326.1519.
(S)-2,2-Dimethyl-5-[2-(1-tosyl-1H-pyrrol-3-yl)butan-2-yl]-1,3-
dioxane-4,6-dione (2l)
Yield: 93%; clear oil; [a]D30.5 +18.4 (c 1.5, CH2Cl2).
An enantiomeric excess of 97% S was measured by chiral HPLC
[AD-H, 10% i-PrOH–hexanes, 1.0 mL/min, tR1 = 16.7 min (S),
tR2 = 18.2 min (R)].
1H NMR (CDCl3, 300 MHz): d = 7.69 (d, J = 8.3 Hz, 2 H), 7.26 (d,
J = 8.2 Hz, 2 H), 7.05–7.03 (m, 1 H), 6.96 (t, J = 1.9 Hz, 1 H), 6.16
(dd, J = 3.2, 1.8 Hz, 1 H), 3.37 (s, 1 H), 2.37 (s, 3 H), 2.01 (dq,
J = 14.0, 7.2 Hz, 1 H), 1.85 (dq, J = 14.1, 7.2 Hz, 1 H), 1.52 (s, 3 H),
1.44 (s, 3 H), 1.01 (s, 3 H), 0.80 (t, J = 7.3 Hz, 3 H).
13C NMR (CDCl3, 75 MHz): d = 164.6, 164.2, 144.9, 136.0, 131.5,
129.9, 126.8, 120.8, 118.6, 113.1, 105.2, 55.9, 42.6, 32.8, 29.7,
26.8, 22.9, 21.5, 8.6.
HRMS (EI): m/z calcd for C21H25NO6S (M+): 419.1403; found:
419.1401.
(5) (a) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc.
2006, 128, 5628. (b) Mauleón, P.; Carretero, J. C. Chem.
Commun. 2005, 4961.
(6) For enantioselective conjugate additions to alkylidene
Meldrum’s acid acceptors leading to tertiary stereocenters,
see: (a) Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E.
M. J. Am. Chem. Soc. 2005, 127, 9682. (b) Watanabe, T.;
Knöpfel, T. F.; Carreira, E. M. Org. Lett. 2003, 5, 4557.
(7) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(b) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.;
de Vries, A. H. M. Angew. Chem., Int. Ed. Engl. 1997, 36,
2620.
Acknowledgment
(8) Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am.
Chem. Soc. 2002, 124, 5262.
This work was supported by the Merck Frosst Centre for Therapeu-
tic Research, the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Canadian Foundation for Innova-
tion, the Ontario Innovation Trust, and the University of Waterloo.
A.W. is indebted to NSERC for CGS-M and CGS-D scholarships.
T. L. thanks NSERC for NSERC-USRA.
(9) The absolute stereochemistry of 2 was opposite to the one
observed for the addition of Et2Zn to 2,2-dimethyl-5-(1-
arylethylidene)-1,3-dioxane-4,6-dione, see reference 4c.
(10) Rimkus, A.; Sewald, N. Org. Lett. 2003, 5, 79.
(11) (a) Brown, R. F. C.; Coulston, K. J.; Eastwood, F. W.;
Gatehouse, B. M.; Guddatt, L. W.; Pfenninger, M.;
Rainbow, I. Aust. J. Chem. 1985, 37, 2509. (b) Baxter, G.
J.; Brown, R. F. C. Aust. J. Chem. 1975, 28, 1551.
References
(1) For reviews, see: (a) Trost, B. M.; Jiang, C. Synthesis 2006,
369. (b) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005,
347, 1473. (c) Douglas, C. J.; Overman, L. E. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5363.
Synthesis 2009, No. 12, 2066–2072 © Thieme Stuttgart · New York