6168
L. Ji et al. / Tetrahedron Letters 50 (2009) 6166–6168
20. Resende, P.; Almeida, W. P.; Coelho, F. Tetrahedron: Asymmetry 1999, 10, 2113.
a
21. Licandro, E.; Maiorana, S.; Baldoli, C.; Capella, L.; Perdicchia, D. Tetrahedron:
Asymmetry 2000, 11, 975.
22. Baldoli, C.; Maiorana, S.; Licandro, E.; Perdicchia, D.; Vandoni, B. Tetrahedron:
Asymmetry 2000, 11, 2007.
b
Me
O
Me
O
Cl
O
23. Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257.
Me
H O
N
N
24. Schoenfelder, A.; Mann, A.; Le Coz, S. Synlett 1993, 1993, 63.
25. Thakur, V. V.; Nikalje, M. D.; Sudalai, A. Tetrahedron: Asymmetry 2003, 14, 581.
26. Hiratake, J.; Yamamoto, Y.; Oada, J. J. Chem. Soc., Chem. Commun. 1985, 1717.
27. Hiratake, J.; Inagaki, M.; Yamamoto, Y.; Oada, J. J. Chem. Soc., Perkin. Trans. 1
1987, 1053.
28. Aitken, R. A.; Gopal, J.; Hirst, J. A. J. Chem. Soc., Chem. Commun. 1988, 632.
29. Aitken, R. A.; Gopal, J. Tetrahedron: Asymmetry 1990, 1, 517.
30. Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794.
31. Chen, Y.-G.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542.
32. Chen, Y.-G.; Deng, L. J. Am. Chem. Soc. 2001, 123, 11302.
33. Sulyok, G. A. G.; Gibson, C.; Goodman, S. L.; Hölzemann, G.; Wiesner, M.;
Kessler, H. . J. Med. Chem. 2001, 44, 1938.
H
H
O
O
N
N
O
O
O
O
Et
Et
Figure 2. Two views of the proposed transition-state assembly for methanolytic
desymmetrization of the anhydride substrate 3. Putative intermolecular hydrogen
bonds are highlighted by dashed lines. The AQN spacer unit located behind the
anhydride substrate 3 is shown in gray for clarity.
34. Fryszkowska, A.; Komar, M.; Koszelewski, D.; Ostaszewski, R. Tetrahedron:
Asymmetry 2005, 16, 2475.
35. Loudon, G. M.; Radhakrishna, A. S.; Almond, M. R.; Blodgett, J. K.; Boutin, R. H. J.
Org. Chem. 1984, 49, 4272.
Thus, we have developed a convenient and efficient route to
synthesize both enantiomers of baclofen. The desymmetrization
of cyclic anhydride reaction developed by Deng’s group was used
as the key step to give (S)-baclofen hydrochloride in 32.8% overall
yield. Alternatively, the (S)-4 was converted to (R)-baclofen hydro-
chloride in 35.1% overall yield.
36. Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203.
37. Yamada, S.; Ninomiya, K.; Shioiri, T. Tetrahedron Lett. 1973, 14, 2343.
38. Spectroscopic data of compounds 3–6 and (R)-1. Compound 3: 1H NMR
(500 MHz, CDCl3): d 2.81–2.87 (m, 2H), 3.07–3.11 (m, 2H), 3.40–3.45 (m, 1H),
7.16 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 9.0 Hz, 2H); 13C NMR (125 MHz, CDCl3): d
33.5, 36.9 (2C), 127.6 (2C), 129.5 (2C), 134.0, 137.5, 165.6 (2C); MS (m/z, %
relative intensity): 226 (M+, 37Cl, 6), 224 (M+, 35Cl, 15), 140 (33), 138 (100), 115
(9), 103 (26), 77 (9); HRMS (ESI): calcd for C11H10ClO3 [M+H]+: 225.0318,
found: 225.0316. Compound (S)-4: ½a D25
ꢁ8.0 (c 0.88, CHCl3); HPLC analysis
ꢀ
Acknowledgments
with
a
Chiracel OD-H column [hexane/i-PrOH/CH3COOH, 185:14:1;
k = 226 nm; 1.0 mL/min; tR(S) = 16.5 min; tR(R) = 20.0 min] 95% ee; 1H NMR
(500 MHz, CDCl3): d 2.59–2.78 (m, 4H), 3.58 (s, 3H), 3.59–3.62 (m, 1H), 7.16 (d,
J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): d 37.3, 40.0,
40.3, 51.7, 128.6 (2C), 128.8 (2C), 132.8, 140.7, 171.7, 176.9; FT-IR (KBr, cmꢁ1):
3035, 1729, 1699, 1435, 1273, 1162, 1096, 825; MS (m/z, % relative intensity):
258 (M+, 37Cl, 4), 256 (M+, 35Cl, 14), 238 (11), 227 (6), 225 (18), 212 (33), 210
(100), 198 (18), 196 (52), 168 (27), 165 (22), 152 (55), 141 (45), 138 (21), 115
(27), 103 (32), 77 (29), 59 (20); HRMS (ESI): calcd for C12H13ClNaO4 [M+Na]+:
279.0400, found: 279.0395. Compound 5: 1H NMR (500 MHz, CDCl3): d 2.46–
2.63 (m, 2H), 3.20–3.22 (m, 2H), 3.38 (m, 1H), 3.49 (s, 3H), 3.51 (s, 3H), 4.70
(brs, 1H), 7.04 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H); 13C NMR (125 MHz,
CDCl3): d 38.0, 41.7, 45.9, 51.7, 52.1, 128.8 (2C), 128.9 (2C), 132.9, 139.5, 156.9,
172.1; FT-IR (KBr, cmꢁ1): 3345, 2953, 1732, 1534, 1256, 1167, 1092, 1014, 828;
HRMS (ESI) calcd for C13H16ClNNaO4 [M+Na]+: 308.0666, found: 308.0664.
We are grateful to Shenogen Pharma Group for the financial
support of this research.
References and notes
1. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional
Properties; Olsen, R. W., Venter, J. C., Eds.; Alan R. Liss: New York, 1986.
2. The GABA Receptors; Enna, S. J., Bowery, N. G., Eds., 2nd ed.; Humana Press:
Totowa, NJ, 1997.
3. Karla, R.; Ebert, B.; Thorkildsen, C.; Herdeis, C.; Johansen, T. N.; Nielsen, B.;
Krogsgaard-Larsen, P. J. Med. Chem. 1999, 42, 2053.
4. GABA-neurotransmitters. Pharmacochemical, Biochemical and Pharmacological
Aspects; Krogsgaard-Larsen, P., Scheel-Krueger, J., Kofod, H., Eds.; Munksgaard:
Copenhagen, 1979.
5. Kerr, D. I. B.; Ong, J. Med. Res. Revs. 1992, 12, 593.
6. Berthelot, P.; Vaccher, C.; Flouquet, N.; Debaert, M.; Luyckx, M.; Brunet, C. J.
Med. Chem. 1991, 34, 2557.
7. Kerr, D. I. B.; Ong, J.; Doolette, D. J.; Abbenante, J.; Prager, R. H. Eur. J. Pharmacol.
1993, 236, 239.
8. Fromm, G. H.; Terrence, C. F.; Chattha, H. S.; Glass, J. D. Arch. Neurol. 1980, 37,
768.
9. Sachais, B. A.; Logue, J. N.; Carey, M. S. Arch. Neurol. 1977, 34, 422.
10. Olpe, H.-R.; Demiéville, H.; Baltzer, V.; Bencze, W. L.; Koella, W. P.; Wolf, P.;
Haas, H. L. Eur. J. Pharmacol. 1978, 52, 133.
11. Allan, R. D.; Bates, M. C.; Drew, C. A.; Duke, R. K.; Hambley, T. W.; Johnston, G.
A. R.; Mewett, K. N.; Spence, I. Tetrahedron 1990, 46, 2511.
12. Langlois, N.; Dahuron, N.; Wang, H.-S. Tetrahedron 1996, 52, 15117.
13. Caira, M. R.; Clauss, R.; Nassimbeni, L. R.; Scott, J. L.; Wildervanck, A. F. J. Chem.
Soc., Perkin Trans. 2 1997, 763.
14. Chênevert, R.; Desjardins, M. Tetrahetron Lett. 1991, 32, 4249.
15. Mazzini, C.; Lebreton, J.; Alphand, V.; Furstoss, R. Tetrahedron Lett. 1997, 38,
1195.
16. Brenna, E.; Caraccia, N.; Fuganti, C.; Fuganti, D.; Grasselli, P. Tetrahedron:
Asymmetry 1997, 8, 3801.
Compound 6: ½a 2D5
ꢀ
+7.3 (c 1.20, MeOH); 1H NMR (500 MHz, MeOH-d4): d 2.46–
2.75 (m, 4H), 3.54–3.59 (m, 1H), 7.26 (br s, 4H); 13C NMR (125 MHz, MeOH-d4):
d 39.7, 41.3, 42.8, 129.5 (2C), 130.3 (2C), 133.5, 143.1, 175.2, 176.5; FT-IR (KBr,
cmꢁ1): 3444, 3327, 2924, 1699, 1634, 1250, 1093, 1040, 1013, 823; MS (m/z, %
relative intensity): 243 (M+, 37Cl, 5), 241 (M+, 35Cl, 21), 225 (7), 197 (31), 196
(37), 195 (100), 180 (54), 178 (35), 167 (83); HRMS (ESI) calcd for
C11H12ClNNaO3 [M+Na]+: 264.0403, found: 264.0401. Compound (R)-1: ½a 2D3
ꢀ
ꢁ2.6 (c 1.00, H2O); 1H NMR (500 MHz, DMSO-d6): d 2.54–2.88 (m, 2H), 2.97–
3.11 (m, 2H), 3.35–3.41 (m, 1H), 7.36 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H),
8.07 (s, 3H), 12.24 (s, 1H); 1H NMR (500 MHz, D2O): d 2.73–2.89 (m, 2H), 3.24–
3.28 (m, 1H), 3.38–3.45 (m, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H);
13C NMR (125 MHz, D2O): d 39.0, 40.2, 44.3, 130.0 (2C), 130.2 (2C), 134.1,
137.8, 176.1; FT-IR (KBr, cmꢁ1): 3030, 1725, 1494, 1411, 1205, 1182, 1127,
1089, 1015, 948, 828; MS (ESI) m/z: 214 [MꢁCl]+; HRMS (ESI) calcd for
C10H13ClNO2 [MꢁCl]+: 214.0635, found: 214.0631.
39. Chen, Y.-G.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965.
40. Hang, J.-F.; Tian, S.-K.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2001, 123, 12696.
41. Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.; Song, C. E. Chem. Commun.
2008, 1208.
42. Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 319.
43. Harding, M.; Bodkin, J. A.; Issa, F.; Hutton, C. A.; Willis, A. C.; McLeod, M. D.
Tetrahedron 2009, 65, 831.
17. Wang, M.-X.; Zhao, S.-M. Tetrahedron Lett. 2002, 43, 6617.
18. Chênevert, R.; Desjardins, M. Can. J. Chem. 1994, 72, 2312.
19. Herdeis, C.; Hubmann, H. P. Tetrahedron: Asymmetry 1992, 3, 1213.
44. Corey, E. J.; Guzman-Perez, A.; Noe, M. C. Tetrahedron Lett. 1995, 36, 3481.