C O M M U N I C A T I O N S
Scheme 2
Transition state geometries for [(dhpe)NidNMe + N3Me] and
[N2O + (dhpe)NidCH2] are planar at Ni, while that for [N3Me +
(dhpe)NidCH2] is tetrahedrally distorted. Calculated activation
parameters for the reaction of (dhpe)NidCH2 + N3Me are ∆H‡ )
+6.7 kcal/mol and ∆S‡ ) -40.7 cal/(mol·K), giving a ∆G‡ of
+18.8 kcal/mol (at 298.15 K). These values compare well with
the experimentally obtained values (∆H‡ ) 8 ((1) kcal/mol; ∆S‡
) -44 ((3) cal/(mol ·K)) for the reaction of 1 with N3Ad. No
evidence for a precursor adduct between (dtbpe)NidE and N2X
was found, so the calculated barriers are relative to separated
reactants. The transition state structures collapsed to stable Huisgen
intermediates, but these were considerably higher in energy than
the eventual products, which result after N2 elimination to give
(dtbpe)Ni(η2-EX). Experimentally, in the reaction of 1 with N2O
this is the observed product (i.e., 5), but the reactions of 1 and
4a,b with N3R give imido complexes in which a second equivalent
of N3R replaces the bulky EdX ligand and N2 is extruded.
In summary, we have shown that the nickel carbene complex 1
and the imido complexes 4a and 4b readily react with N2X
substrates via net “CR2”, “NR”, or “O” transfer to form multiply
bonded organic products. Experimental, kinetic, and computational
results all support a mechanism involving 1,3-dipolar cycloaddition
of N2X to (dtbpe)NidCPh2 or (dtbpe)NidNR to give five-
membered Huisgen-type intermediates. Product formation results
on elimination of N2.
with Cp2Zr(dN-t-Bu)(THF) to form Cp2Zr(κ2-RN4-t-Bu) or
(cymene)OsdN-t-Bu to yield (cymene)Os(κ2-RN4-t-Bu).14
B3LYP/6-311+G(d) computations were carried out to explore
the notion that the reactions of 1 and 4 with N3R and N2O, classic
1,3-dipolar reagents, proceeded by a cycloaddition pathway with
five-membered ring (i.e., Huisgen) intermediates. A summary of
the calculated results based on the model complexes (dhpe)NidE
(E ) CH2, NMe) with N2X (dhpe ) 1,2-bis(dihydridophosphino)-
ethane; X ) O, NMe) is shown in Figure 1 and provides a consistent
picture for all three reactions modeled. The reactions proceed via
initial 1,3-dipolar cycloaddition of (dhpe)NidE with N2X to give
a five-membered transition state (Figure 2), which is evocative of
transition states calculated by Houk et al. for organic 1,3-dipolar
cycloadditions.15 Enthalpic barriers for 1,3-dipolar cycloadditions
are reasonable and consistent with the exothermicity of the reactions
to form Huisgen intermediates.
Acknowledgment. This work was supported by the National
Science Foundation through Grant CHE-0615274 (to G.L.H.) and
a predoctoral GAANN Fellowship from the Department of Educa-
tion (to R.W.). T.R.C. acknowledges the NSF for equipment support
(CRIF, CHE-0741936) and a grant from Basic Energy Sciences,
Department of Energy (DEFG02-03ER15387). We thank Jack
Halpern for assistance with the kinetic analysis.
Supporting Information Available: Experimental and computa-
tional procedures with characterization data and kinetic data. This
References
(1) (a) Matsunaga, P. T.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem.
Soc. 1993, 115, 2075. (b) Koo, K.; Hillhouse, G. L.; Rheingold, A. L.
Organometallics 1995, 14, 456. (c) Matsunaga, P. T.; Mavropoulos, J. C.;
Hillhouse, G. L. Polyhedron 1995, 14, 175.
(2) (a) Matsunaga, P. T.; Hess, C. R.; Hillhouse, G. L. J. Am. Chem. Soc.
1994, 116, 3665. (b) Koo, K.; Hillhouse, G. L. Organometallics 1996, 15,
2669.
(3) McGlinchey, M. J.; Stone, F. G. A. J. Chem. Soc. D 1970, 1265a.
(4) Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. J. Am.
Chem. Soc. 2005, 127, 11248.
Figure 1. B3LYP/6-311+G(d)-calculated enthalpies (1 atm, 298.15 K) for
model 1,3-dipolar cycloaddition mechanisms.
(5) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2008, 130, 12628.
(6) (a) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350.
(b) Mindiola, D. J.; Hillhouse, G. L. Chem. Commun. 2002, 1840.
(7) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976.
(8) Fischer, H.; Zeuner, S. J. Organomet. Chem. 1985, 286, 201.
(9) Whited, M. T.; Grubbs, R. H. J. Am. Chem. Soc. 2008, 130, 16476.
(10) Hu, X.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322.
(11) Mindiola, D. J.; Waterman, R.; Jenkins, D. M.; Hillhouse, G. L. Inorg.
Chim. Acta 2003, 345, 299.
(12) Bach, I.; Po¨rschke, K.-R.; Goddard, R.; Kopiske, C.; Kruger, C.; Rufinska,
A.; Seevogel, K. Organometallics 1996, 15, 4959.
(13) (a) Ashley-Smith, J.; Green, M.; Stone, F. G. A. J. Chem. Soc., Dalton
Trans. 1972, 1805. (b) Dubrawski, J.; Kriege-Simondsen, J. C.; Feltham,
R. D. J. Am. Chem. Soc. 1979, 102, 2091. (c) Trogler, W. C. Acc. Chem.
Res. 1990, 23, 426.
(14) (a) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995,
117, 974. (b) Michelman, R. I.; Andersen, R. A.; Bergman, R. G.
Organometallics 1993, 12, 2741.
(15) (a) Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2005, 109, 9542. (b) Jones,
G. O.; Ess, D. H.; Houk, K. N. HelV. Chim. Acta 2005, 88, 1702.
Figure 2. Calculated transition state for the 1,3-dipolar cycloaddition of
N3Me to (dhpe)NidNMe in forming a 1,2-tetrazene intermediate.
JA904370H
9
J. AM. CHEM. SOC. VOL. 131, NO. 36, 2009 12873